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multiple parametric couplings

Xi Cao, PhD

University of Pittsburgh, 2021

Quantum computers have huge potential applications, but do not currently exist. It 

has already been proven that a quantum computer would outperform the best classical 

supercomputers in certain problems, some of which have vital connections with our daily 

lives. For example, quantum computers efficiently solve the prime number factoring problem, 

which in turn is the foundation of the RSA algorithm behind most online transactions. 

There is a great deal of current effort to implement quantum computers, and we have seen 

good progress in platforms including superconducting circuits, ion traps, and photons in 

cavity QED systems and spins in semiconductors. These machines include up to roughly 50 

quantum bits at present, but they are not very useful as quantum errors quickly decohere 

the computer’s state and prevent computation. These errors can be mitigated via quantum 

error correction at the cost of additional size and complexity.

Progress in the field towards error corrected, large-scale quantum machines requires us to 

require new tools for controlling, coupling, and reading out qubits. In this thesis, I will focus 

on such explorations in superconducting circuits. In this thesis, we seek to expand the already 

flexible toolkit of quantum circuits by exploring the uses of parametric couplings based on 

third-order nonlinearities. This type of nonlinearities has only been used in quantum-limited 

amplifiers before, here we try to further explore their applications by creating new methods 

for controlling and measuring qubits that based on it.

In the first experiment, we address the problem of implementing a highly efficient quan-

tum non-demolition qubit readout. With the use of two-mode squeezed (TMS) light and 

combined with phase-preserving parametric amplifiers into an interferometer for dispersive 

qubit readout, we demonstrate a measurement scheme with a 44% improvement in power 

signal-to-noise ratio. We also investigate the back-action of the measurement scheme.

In the second experiment, we create an effective chemical potential for photons with 

parametric system-bath coupling. In particular, we use a lossy Superconducting Nonlinear
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Asymmetric Inductive eLement (SNAIL) as both the bath and coupler. The bath engineering

is realized by combining the multiple parametric drives and the dissipation together.
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I. Introduction

A. Background of quantum computation

Quantum mechanics has been a vital branch of modern physics since the early 1900s. It

is both essential to explaining fundamental concepts such as structure of atoms, and under-

lies much of modern technology including such daily-use objects as lasers and transistors.

However, the idea to use quantum mechanics as a basis for computation did not receive

much attention until Feynman proposed the concept of simulating physics problems with

a quantum computer [1] in the early 1980s. He argued that by taking advantage of the

unique properties of quantum systems, a new type of computer could be developed, which

will be fundamentally different than the Turing machines described by classical computation

science. This new ‘quantum computer’ would provide a possibly more efficient way of tack-

ling problems involving simulations of quantum mechanics, as it integrates the complicated

calculations into the intrinsic evolution of a quantum system: the answer is naturally de-

veloped rather than explicitly calculated. More precisely speaking, in a quantum simulator,

we can create a realization of the specific systems of interest that allows us to observe the

system’s properties rather than numerically solving Schrodinger’s equation directly, which

can be difficult for classical computers when the problem Hilbert space is large.

Not long after Feynman’s proposal, the concept of the Quantum Turing machine was

developed by Deutsch [2]. By the end of the century, algorithms that demonstrate ‘quan-

tum speed up’ in searches of databases by Grover [3] and integer factorization by Shor [4]

were developed. This latter algorithm continues to drive much of the interest in quantum

computation, as the exponential speed-up in Shor’s algorithm diminishes the reliability of

the RSA cryptosystem, on which the security of almost every online transaction is based.

A few decades ago, we began to see the first examples of qubit-like quantum behavior

in various platforms, including nuclear spins [5], ion traps [6], photons in cavity QED sys-

tems [7] and superconducting circuits [8]. The field of quantum computation is currently

undergoing a phase of rapid growth, with a recent National Quantum Initiative injecting ∼
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one billion dollars into research in this area in the U.S. More, we are also seeing a transfor-

mation from a long-range vision and challenge led primarily by academic researchers to a

potentially realizable (but still very challenging) disruptive technology being actively devel-

oped by industrial researchers at established companies like Google, IBM, Honeywell, Intel

(and others) and startups such as IonQ, Quantum Circuits, and many more.

One important goal for the field of quantum computation is to realize a physical de-

vice that solves useful problems that a classical computer is not able to solve in a reason-

able time, that is, to demonstrate a ‘quantum advantage’. Although recent results from

Google [9] seems to show the quantum advantage in a random quantum circuits sampling

problem, there is still a long way to go before the realization of a universal quantum computer

that can implement various algorithms. Different experimental platforms, such as spins in

semiconductors [10, 11], trapped ions [12–14], photonic system [15, 16] and superconduct-

ing circuits [17,18] have shown their potential as candidates for future quantum computers.

Despite this progress, the presence of noise and decoherence still prevents the realization

of a practical large-scale quantum machine. Theories to create quantum computers which

function even in the presence of errors, namely quantum error correction and fault-tolerant

quantum computation, have been developed to address this issue. However, these techniques

still seem to be some distance away from practical implementation, thus people believe it

would be realistic to implement Noisy Intermediate-Scale Quantum (NISQ) technology in

the near future [19]. Here, noisy indicates the existence of noise in the system and also

that qubit gate control is not perfect, which will put a limitation on the performance of the

device. Intermediate-scale refers to a quantum machines with at least 50 ∼ 100 qubits. Such

machines will not be able to be simulated with current classical supercomputers by brute

force, and have already been built by researchers from Google and IBM [9,20],but are not big

enough to perform truly useful computations, such as factoring large numbers. Although it

is not the ultimate form of a quantum computer, NISQ technology will bring us new insights

about large-scale quantum machines and can also be used as a tool for exploring the physics

of many entangled particles. Given the rapid development of the field, we remain optimistic

and hope for practical applications of a quantum computer in our lifetimes that will assist

in the discovery of new materials and medicines.
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Our lab, and thus this thesis, is focusing on the superconducting Josephson-junction

based quantum circuits, which have been rapidly improving in terms of vital benchmarks

such as qubit lifetime, gate and readout fidelity in the recent years, making it one of the

leading platforms for implementing quantum computers. However, despite these promising

developments, there is still a long way to go before we see a useful universal quantum com-

puter. To bring us to next stage, both the technical improvements and new understanding

of physics are in need. A mixture of these two has been the focus of this PhD, building parts

that can be used as a component of the future quantum computer but also tools that help

people to explore exciting new physics.

B. History and challenges for superconducting quantum computation

The main feature that makes the quantum computer different than a classical one is

how it stores and manipulates data. The basic element that handles the information in a

quantum computer is the qubit.There are two major differences between a qubit and classical

bit: superposition and entanglement. These are the sources of the computational power for

a quantum computer.

Superposition is a counter intuitive property from a classical point of view. A classical

bit which can only be in the state of 0 or 1, while a qubit can simultaneously exist in a

configuration that has multiple states. In other words, it can be both the state of 0 and 1,

or, more precisely, any possible state in the linear space generated by coherent combinations

of states |0〉 and |1〉. (here | 〉 is the Dirac notation to represent a quantum state). Although

the state can remain in such a superposition state during computation, a measurement will

destroy this superposition and collapse the superposition onto the basis states with a proba-

bility given by the amplitude of the coefficients in the superposition, squared. While it is not

obvious from the single qubit example, one of the most important features of quantum states

is that the number of states the system can assume grows exponentially (as 2N , where N is

the number of qubits). Thus, a system with 50 qubits can be in a coherent superposition of

250 = 1125899906842624 states, each described by an analog, continuous, complex number.
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This huge amount of data must be tracked, which even for a modest quantum system (or

computer) is why simulating quantum mechanics on digital classical computers is so very

hard and inefficient.

Quantum entanglement is a physical state involving a pair or a group of states in which

the state of single qubit cannot be described independently without referring to other qubits.

A measurement of one qubit will simultaneously collapse other qubits to a state determined

by the correlation relation given by the nature of the states’ entanglement. Take a Bell state

|ψ〉 = (|00〉 + |11〉)/
√

2 as an example. If we only measure one of the qubits of a Bell pair,

say the first qubit, then we will get an equal distribution between the |0〉 and |1〉 state, that

is, 50% percent of the time we get |0〉 and 50% percent of the time we get |1〉 with a random

outcome of |0〉 and |1〉 on each particular measurement. However, if we try to measure both

of the qubits at the same time and look at the correlation between the two measurement

outcomes, we find that we will always get the same result. The measurement results of the

states of the two qubits are tightly correlated. That is, if the first qubit is in the |0〉 state,

then we will automatically know the state of the second qubit is also |0〉 (and vice versa), no

matter how far away they are apart from each other. This property of an entangled state,

which was called ‘spooky’ by Einstein, has been proven in experiment [21]. Note that each

qubit examined alone looks random, but pairs of answers for measurement of both qubits are

perfectly correlated in certain bases. In a quantum algorithm, we manipulate the qubits with

carefully designed quantum operations that enhance the probability of the correct solution

state while suppress the probability of other states. Then, by applying a measurement at

the end of the computation, the chance of getting the right answer is maximized.

In this thesis, we will focus on the superconducting qubits. The superconducting qubit is

made of superconducting circuits consist of inductors, capacitors and Josephson junctions. A

simple L-C circuit can form a harmonic oscillator, but it will not be sufficient to be used as a

qubit, as its energy levels are equally spaced, no individual transitions can be independently

addressed to form the computational basis for quantum algorithms. Therefore, certain non-

linearity needs to be introduced in a superconducting circuits, which is implemented with

the help of Josephson junctions (See Ch. II for detailed discussion). The first demonstration

of the superconducting qubit in 1999 [8] with coherent times on the order of about 1 ns. This

4



is a perfect prove of concept result for showing the existence of such qubit but it is still far

from enought to be used for any practical quantum algorithms. Since then, various designs

of the superconducting qubit have been proposed and realized in different groups across the

world, such as: transmon qubit [22–24], phase qubit [25, 26], flux qubit [27, 28], fluxonium

qubit [29, 30], 0 − π qubit [31]. With these efforts, we have seen qubits with coherent time

that is close to the order of ms recently [32], which means a factor of almost one million

improvement in just two decades.

Currently, lost of the researches, and my PhD also, are focusing on the transmon qubit

in the so-called circuit Quantum ElectroDynamics (cQED) architecture [33]. Similar to the

field of cavity Quantum ElectroDynamics (cavity QED), this architecture provides a frame

for people to study the interaction between the artificial atoms (superconducting qubits) and

microwave light. In contrast to cavity QED, in cQED the atoms and light can have a larger

coupling strength between them, which makes it easier to engineer the system Hamiltonian.

Within this frame, the single-qubit gates are implemented by sending microwave drives

to the system. And with the help of the Derivative Removal by Adiabatic Gate (DRAG)

technique [34], now the single qubit gate can be implemented with fidelity ≥ 0.999 [24,35,36].

As for two-qubit gates, there are three different ways of realizing them. The first is to use

frequency tunable transmon qubits and move the qubits onto resonance when applying the

gate, and we have seen high fidelity two-qubit gates from this scheme [24]. The second idea is

to use fixed frequency qubits and control them with microwave drives, typically driving one

qubit at the frequency of the other to implement a high-fidelity two-qubit gate. This method

is also known as s ‘cross resonance gate’ [37]. The third idea is to drive a coupling element (or

sometimes the qubit itself) between the two qubits to create a parametric coupling between

the qubits to realize a two-qubit gate [38].

Much recent effort towards large-scale machines focuses along three lines: improving

the coherence, optimizing qubit readout and to scaling up system size. To demonstrate

the power of quantum algorithms over their classical counterparts requires a large enough

quantum system that connects multiple qubits (preferably in a readily scalable manner,

so that the device can be easily extended to potentially address harder problems) while

being able to manipulate and maintain coherence and entanglement. We must also be
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able to initialize a known initial state of the computer, and read out each qubit with high

fidelity. These requirements are summarized as DiVincenzo’s criteria [39]. The coherence

times of qubits suffer from the non-zero connection between the qubit and external noise in

the surrounding environment. Progress has been made to improve the coherence of qubits

with better circuit designs that suppress the sensitivity to noise [22, 29, 40], better filtering

on wiring that removes fluctuations in the environment seen by the qubit [41], and better

fabrication processes that reduce the internal loss of the qubit [32].

However, despite the efforts mentioned above, there is always a trade-off between maxi-

mizing a qubit’s coherence and isolating it from environmental noise, as a perfectly isolated

qubit is no longer able to be manipulated and measured. This conflict represents an ongoing

challenge for the foreseeable future, that is, to build a quantum computer with necessarily

flawed components. Some sort of quantum error correction (QEC) which can largely sup-

press the error rates is required. The first QEC scheme was proposed by Shor in 1995 [42]

where he showed how the information can be protected by encoding the state of one qubit

into an entanglement of nine qubits in a decoherence-resistant way. This result demonstrates

the basic idea of QEC: to assemble several noisy qubits into one logical qubit in a larger

Hilbert space and make it less vulnerable to errors. We have seen several plans of QEC

based on the extension of this idea [43–45]. Recently a different class of schemes based on

superconducting circuits has been put forward which have approached or slightly exceeded

the break-even point [46–48], breaking even meaning the schemes corrected at least as many

errors as the additional hardware and control overhead created.

Although progress in QEC is promising, we also note that there are other types of errors

that any particular QEC code cannot address, such as the state preparation and measurement

errors, a qubit leaving the computational manifold as its physical implementation is not

strictly a two-level system, or two- and multi-qubit errors. The method to protect the

quantum information against these errors involves the concept of fault-tolerant quantum

computation (FTQC). The first step of FTQC is to operate the logical qubit with fault-

tolerant operations which are designed such that a failure of a single qubit will only result in

a correctable error on the system. Then, another layer of QEC will be applied to these logical

qubits and fault-tolerant operations. If the error rate of this process is below some threshold
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value, then a concatenation of multiple levels of the same process will lead to better and

better results [49].

QEC and FTQC require both advances in engineering and in further understanding of

the underlying coherent and incoherent physical processes in our quantum computers. Two

such explorations to expand our ability to understand and control quantum circuits are at the

heart of my thesis. In Ch. III, we introduce a new qubit measurement scheme using two-mode

squeezed light. In the scheme, we work on demonstrating a new measurement technique that

shows a high measurement fidelity and investigating a physics behind quantum measurement

using entangled quantum light. In Ch. IV and Ch. VI, we realize a controllable bath for a

transmon qubit with the bath engineering technique. In this project, we create a chemical

potential for a photonic system, which does not exist in a natural setting. It can be used as

a tool for discovery by coupling it to other systems.

C. Quantum measurement and two-mode squeezed qubit readout

A qubit-specific measurement capability is one of the Divincenzo’s criteria and also one of

the research fronts for superconducting computation. Originally, DiVincenzo did not require

this measurement to be quantum non-demolition (QND) [50], imagining measurement as

only taking place after the computation has ended. A QND measurement is the type of

measurement of a quantum system that the measurement itself will not destroy the state

of the qubit and thus a consecutive measurement will always yield the same result as the

previous one. High fidelity QND measurements, which project the qubit into an eigenstate of

the measurement operation (which is also accurately reported to the experimenter controlling

the system) is vital in QEC codes based on real time feedback.

A commonly used measurement method in superconducting circuits is the dispersive

measurement as shown in Fig. 1. A qubit is dispersively coupled to a microwave cavity (see

Ch. II for details), such that the frequency of the cavity will have a qubit-state-dependent

shift. Therefore, the state of the qubit can be inferred by measuring the frequency of the cav-

ity as shown in Fig. 1(a). As in this measurement scheme the probe signal does not interact
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Figure 1: Dispersive measurement. (a) A system consists of a two-level quantum system

(qubit) placed in a microwave cavity. The qubit and cavity are dispersively coupled to each

other. The frequency of the cavity will thus get a qubit-state dependent shift. This shift can

be measured via a phase shift of a coherent light that reflects on the cavity. (b) The coherent

light can be visualized in the phase space. It is represented as a 2D Gaussian distribution

with a standard deviation σI = σQ = 1/2 and a displacement from the origin set by the

average number of photon in the pulse. Both |g〉 and |e〉 give similar result, only with a

phase difference determined by the dispersive shift.

directly with the qubit, it is also known for its QND nature, in contrast to destructive mea-

surement, for example [51]. The most commonly used probe light in superconducting qubit

measurement is the coherent state of microwave light. Coherent states are the eigenstate of

the annihilation operator [52]. Although counterintuitive, this definition gives a quantum

state which is the direct analog of the state of a driven, dampged classical oscillator. Co-

herent states can be visualized in phase space, which plots the in-phase (I) and quadrature

(Q) components of the propagating light . A typical result of dispersive measurement with

coherent light is shown in Fig. 1(b). In phase space, a coherent state is represented by a

2D-Gaussian distribution with standard deviation σI = σQ = 1/2. The I and Q components

do not commute (just as momentum and position do not commute for a physical pendulum),
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and so cannot be precisely measured at the same time due to the uncertainty principle.

We will get a similar result (a 2D Guassian distribution) for qubit in |g〉 and |e〉, which

corresponds to 0 and 1 microwave photon number in the circuit (it is the same as the |0〉 and

|1〉 but a more commonly used language for experimentalists), only with a phase difference θ

that comes from the frequency shift due the dispersive coupling. The distance between the

center of the two distributions versus their widths sets the measurement strength. The state

of a qubit can be determined from an individual measurement result (Im, Qm) by looking

at which distribution the point falls into. A measurement error happens when a |g〉 state

result is recognized as an |e〉 state (and vice versa). This is most likely to happen in the

area where the two distributions overlap. In order to increase the fidelity of a measurement

(at least for the Z-projective measurement), we need to separate the two distributions for

the |g〉 and |e〉 states, or in other words, increase the measurement strength, or the signal-

to-noise ratio (SNR) of the measurement. The SNR is defined as the ratio between the

separation of the distributions over their deviation: (Igc−Iec )2+(Qgc−Qec)2

σ2
g+σ2

e
. In experiments, a

quantum limited amplifier is also needed to overwhelm the noise from the latter parts of the

measurement chain so that we can perform a good single shot readout of the qubit state

at room temperature. Typically, there are two types of quantum limited amplifiers. For a

phase preserving amplifier, both quadratures of the incoming microwave signal are amplified,

with a half-photon ‘noise’ added to the signal [53], which will in principle decrease the SNR

of the measurement, but we can learn (albeit imperfectly) the information present in both

quadratures. For a phase sensitive amplifier, we ‘squeeze’ away one quadrature to learn the

information with perfectly the information in the other quadrature. The price we pay in this

mode of operation is that all the information in the quadrature that is squeezed away (and

no longer accessible to any observer).

There is another side to look at these quantum limited amplifiers. As they are all

quantum devices, it is worth studying what kind of quantum light they produce. When

there is no amplification/squeezing involved, the input and output states are both coherent

light. And as we mentioned above, coherent light forms a 2D Gaussian distribution in phase-

space. The finite radius of the distribution comes from the uncertainty principle from the

quantum mechanics as shown in Fig. 2(a). Coherent states have the same uncertainty for
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Figure 2: Schematics of squeezing states. (a) Phase space representation of a (coherent)

vacuum state. The radius of the distribution corresponds to a half-photon noise, which comes

from the Heisenberg uncertainty principle. (b) Phase space representation of a single mode

squeezed vacuum. The fluctuation on one quadrature is squeezed at the cost of creating

more fluctuation on the other. (c) Phase space representation of each mode of a two-mode

squeezed vacuum. When measuring independently, each mode behaves as a thermal state

with an extra half photon noise added by squeezed state generator (e.g. JPC). (d) The

correlation relation between the two modes in a two-mode squeezed vacuum.

both quadratures, so they appear as an isotropic state in phase space. One-mode squeezed

states, as shown in Fig. 2(b), will modify this isotropic state by ‘squeezing’ one quadrature

and ‘antisqueezing’ the other by an equal and opposite amount. This is naturally attached

to the act of phase-sensitive amplification that amplifies (anti-squeezes) one quadrature and

squeezes away the other. The situation for a phase preserving amplifier is a little more

complicated, as it produces ‘two-mode squeezed’ light. A phase preserving amplifier always

has two ports, with each port having reflection gain of its input, and will also receive added

noise from the other port. The fact that both of the output signals are related to both of

the input signals turns out to be a quantum mechanical requirement from that the output

mode should preserve the commutation relation between its two quadratures. This gives

the interesting property of two-mode squeezed light: when measured independently, each
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mode of a two-mode squeezed vacuum behaves as a thermal state, as shown in Fig. 2(c).

The squeezing effect does not show up for each single mode, but instead appears in the

correlation relation (I± = I1 ± I2 and Q± = Q1 ± Q2) between the modes, as shown in

Fig. 2(c). (A detailed discuss about how a phase persevering amplifier works can be found

in Sec. II.E). This effect of the phase preserving amplifier turns out to the import resource

we use in the two-mode squeezed light readout project in Ch. III.

Another important dimension to assess the quality of a measurement is the measurement

efficiency. In a QND measurement, the qubit state evolves during the measurement process

until it reaches an eigenstate of the measurement operator. The effect that the measurement

has on the qubit is known as the back-action of the measurement. For an ‘efficient’ measure-

ment, the back-action should be perfectly trackable, or in other words, the measurement will

have maximum SNR for the amount of light we sent in, provided the ‘noise’ (deviation of the

distribution) is due to inherent quantum fluctuations in the input state and the quantum

action of the amplifier [54].

In this picture the ‘noise’ from these sources is not an actual noise (i.e. something that

hides the signal), as we can perfectly learn how the qubit evolves from the measurement

result. Instead, these fluctuations are what cause the back-action to be unpredictable in

advance (but trackable for a given measurement record). We can the define the efficiency of

the measurement:

η =
σ2
Heis

σ2
Heis + σ2

add

(I.1)

where σHeis = 1/2 comes from the fundamental non-commutativity of the variables I and Q

and thus are representative of Heisenberg back-action and σadd is the non-Heisenberg added

noise from the measurement chain. Compare to the SNR, the measurement efficiency can

better describe the trackability of the qubit state under measurement. This idea that to

qualify a measurement by how much we can track the qubit evolution under the measure-

ment process is rather useful in practical experiment, and gives a unity efficiency for the ideal

phase-preserving amplifier instead of one-half as in Caves’ theorem [53]. There is no contra-

diction here, as Caves was concerned with tracking the information present in the microwave

readout tone, which is obscured by being entangled with the amplifier’s added fluctuations.

However, we are only interested in knowing the qubit’s state, which is influenced by both
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noise sources.

In Ch. III, we address this issue of measurement and efficiency for both coherent light and

two-mode squeezed light measurement with a study of the back-action of the measurement

for each type of microwave light. We demonstrate that using two-mode squeezed light instead

of the conventional coherent light can result in a 44% improvement in the power SNR of the

measurement.

D. A chemical potential for transmon qubits

The idea of bath engineering is to take advantage of the non-unitary evolution or the

dissipation in a system to generate desired quantum coherent states and useful quantum

processes. To put it in another way, if you have a target state for your quantum system,

or a potential kind of evolution, bath engineering creates a strange ‘noise’ or ‘relaxation’

for your system which will push the system to your desired condition. Typically, this could

also be done with a coherent quantum drives on the system, but bath engineering has the

advantage that it can be ‘set and forget’ and acts without the need for real-time monitoring

and control.

The concept of bath engineering and its application to quantum computation was first

formulated in [55,56] and then developed in [57,58]. Since then bath engineering has been an

important tool in multiple applications for qubit state preparation/reset [59–61], generation

of multi-qubit entangled states [62, 63] and autonomous quantum error correction [64, 65].

Preparing/stabilizing a state using the engineered dissipation has several advantages over

conventional methods using measurement and coherent unitary operations. For example, in

the case of active measurement based feed back, a decision needs to be made after receiving

the result of the measurement which typically takes 0.5 - 1 µs. A dissipation engineering

based feedback protocol will thus be simpler and faster and could potentially yield a result

with higher fidelity, see [66] for a comparison. In some many-body simulation problems [67–

69], bath engineering can prepare and stabilize states which are needed for the project that

is difficult to generate using coherent drives.
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In Ch. IV and Ch. VI, we implement a bath engineering project for a transmon qubit

through a three-wave parametric coupling in the system. The three-wave bath-engineering

circuits were realized in two ways: with a Josephson ring modulator and lossy SNAIL-based

resonators (see Ch. II). By combining parametric drives and the SNAIL’s dissipation, we cre-

ate a controllable bath for a photonic system with a tunable chemical potential. A photonic

system such as the transmon will not have a chemical potential in the natural setting, and

thus the results of this project provides an interesting and valuable tool for the investigation

of the physics and creation of exotic states, particular in multi-mode simulators [67,68].

E. Organization of this thesis

This thesis is organized as follows: in Ch. II, we start with the introduction of the tools

we need for our experiments. A quick review of superconducting qubits with a focus on

the transmon qubit and the dispersive measurement is given in Sec. II.B. Next we discuss

the basic idea of parametric couplings in Sec. II.C. As an example of the use of parametric

couplings to create amplifiers, we give an introduction to the Josephson parametric converter

(JPC) in Sec. II.D and demonstrate how we can use it to generate two-mode squeezed light in

Sec. II.E. We also talk about the Superconducting Nonlinear Asymmetric Inductive eLement

(SNAIL) device as a dipole element with a third order term and how it could be used in the

bath engineering project in Sec. II.F.

In Ch. III, we move to the first experimental project: to demonstrate a new qubit

measurement scheme with two-mode squeezed light. We first introduce the setup and the

basic parameters for the experiment in Sec. III.B and Sec. III.C. We then demonstrate the

interference of the two-mode squeezed light in Sec. III.D and show the noise performance

and the SNR improvement in our setup in Sec. III.E. Next we move to the investigation of

the measurement efficiency with the weak measurement protocol in Sec. III.G.

In Ch. IV, we discuss the theory for the project that creates a tunable chemical potential

for a photonic system. We start with the original theory proposal of the project from

Hafezi et al. [70] in Sec. IV.B. Then we give a detailed introduction of our design that
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directly implement Hafezi’s proposal in Sec. IV.C and an alternative design we used in the

experiment which consists of a qubit and lossy SNAIL resonator parametricaly coupled with

each other in Sec. IV.D.

In Ch. VI, we talk about the experimental realization of the chemical potential project.

Start in Sec. VI.B, we introduce how to directly implement the original theory proposal via a

low frequency JPC and also discuss the practical issues which hampered this implementation.

Next in Sec. VI.C, we demonstrate bath engineering by instead parametrically coupling a

qubit to a lossy SNAIL mode. In Sec. VI.D, we discuss the significance of this experimental

platform and its potential application in other projects.

The thesis concludes with a review of my results and a discussion of future directions

which I believe may prove fruitful in Ch. VII.
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II. Hamiltonian engineering tool box

A. Overview

In this chapter, we will introduce a Hamiltonian engineering toolbox for superconduct-

ing quantum computation. Starting in Sec. II.B, we introduce the key nonlinear element

powering all of circuit QED: the Josephson junction (JJ). We then show how to model and

quantize the system using the technique of circuit QED, and discuss how to use JJs to con-

struct simple transmon qubits. Next, we demonstrate how to extract the information in the

qubit using dispersive measurement by coupling the transmon to a microwave cavity.

In Sec. II.C, we discuss how we can extend this tool box with parametric drives. With a

proper choice of drives on a system containing the right nonlinearities, certain processes can

be selected under the rotating wave approximation. In Sec. II.D, we demonstrate the use of

the parametric drives with the example of the Josephson Parametric Converter’s parametric

gain and conversion. Next in Sec.II.E we show how two port, phase-preserving amplifiers

such as the JPC naturally produce two-mode squeezed light, which we will use as a quantum

resource for quantum measurement in Ch. III. Finally in Sec. II.F, we discuss the Supercon-

ducting Nonlinear Asymmetric Inductive eLement (SNAIL), an alternate circuit element for

generating third-order nonlinearities, and how it can be used for a bath engineering project

discussed in Ch. IV and Ch. VI.

B. Superconducting qubits and dispersive measurement

Any quantum information is encoded in a quantum degree of freedom of a quantum-

bit (qubit). This could be the proper energy levels in a atomic or ionic qubit [12–14],

spins of the electrons in semiconductor [10, 11], the polarization of the photons [15, 16], or

in our case for superconducting qubit, a degree of freedom of an electrical circuit [17, 18].

Despite the various realization platform, a system needs to have a pair of energy levels that
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Figure 3: Summary of transmon qubit. (a) Circuit schematic for the transmon qubit.

A transmon qubit is made by taking a Josephson junction and have it shunted with a large

capacitor. To stay in the transmon regime, the ratio between the Josephson energy EJ and

the charging energy EC needs to be large enough EJ/EC ∼ 100 to make it insensitive to

the charge noise. LJ represents the nonlinear inductance of the junction and CJ is the self

capacitance of the junction while CS is the shunting capacitance. (b) Energy diagram of a

transmon qubit. It behaves as an anharmonic oscillator due the nonlinear inductance from

the junction. Unlike a linear oscillator, the transmon has unequally spaced energy level. The

energy level difference decrease by the anharmonicity of the qubit, allowing the transitions

between energy levels to be individually driven. (c) Optical image of the transmon qubit on

the sapphire chip. The large pad is used as the dipole antenna that couples the qubit to the

cavity mode and also acts as the shunting capacitor for the junction. (d) An SEM image of

the Josephson junction at the center of a transmon. The junction is fabricated by the Dolan

bridge technique.
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can be selectively addressed for it to be used as a qubit. This requires a certain amount

of nonlinearity in the system. For superconducting qubits, this requirement is fulfilled by

the use of Josephson junctions, a nonlinear, dissipationless circuit element, which is the

most fundamental building block of superconducting quantum circuits [71]. There are many

different implementation of Josephson junction [72], but the vast majority of junctions used

for superconducting qubit are the S-I-S type, that is, the junction is made with one ∼ nm

thick insulating layer sandwiched by two superconducting electrodes. Typically (and in all

experiments shown in this thesis), the junction is made with aluminum electrodes and an

amorphous aluminum oxide tunnel barrier. The nonlinear features of a junction can be seen

from the Josephson relations [73]:

I(t) = I0sin(ϕ(t)) (II.1)

∂ϕ

∂t
=
V (t)

ϕ0

(II.2)

where ϕ(t), I(t) and V (t) are the superconducting phase difference across the junction,

the current, and the voltage across the junction respectively, I0 is the critical current of

the junction and ϕ0 = Φ0/2π = h̄/2π is the reduced magnetic flux quantum. Then, after

re-writing the voltage-current relation of a junction using these two equations, we get:

V =
ϕ0

I0cos(ϕ)
İ =

ϕ0√
I2

0 − I2
İ . (II.3)

Comparing this to the usual voltage-current relation of an inductor V = Lİ, we notice

that the Josephson junction behaves like a non-linear inductor with a current dependent

inductance

L(I) =
ϕ0√
I2

0 − I2
. (II.4)

The linear component of the inductance is given by Lj = ϕ0

I0
, which described the inductance

when I � I0. We also note that, despite the inductive feature of the junctions, it also

has a small capacitance which comes from the parallel plate capacitor formed by the two

superconducting electrodes. Even without a shunting capacitor, a junction itself can already

be considered as an anharmonic oscillator with a plasma frequency of the order of tens of

gigahertz is fabricated from aluminum with a typical aluminum oxide barrier (as are all
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junctions in this thesis). This frequency can be calculated by writing down its Hamiltonian

and treated it the same way as we discuss below for the transmon. Based on this element,

various quantum circuits have been created. There is a zoo of qubits [18], with so-called

charge qubits and flux qubits arising from circuits where those quantum degrees of freedom

are good bases for describing the qubit state.

In my thesis I will focus on the transmon qubit. The transmon differs from its prede-

cessors, particularly the Cooper Pair Box [8], in that the transmon is a Josephson junction

shunted by a large capacitor (see Fig. 3). The capacitor suppresses the qubit’s sensitivity

to the charge noise/variation and thus removes one of the major sources of dephasing. Due

to the strong diluting effect of the large shunt capacitor, a transmon qubit can be modeled

as a weakly anharmonic oscillator [22].This can be seen more clearly if we write down the

Hamiltonian for the circuit in Fig. 3(a):

H =
Q2

2C
− EJcos(

Φ

ϕ0

) (II.5)

where C = CJ +CS is the total capacitance of the circuit, Q is the charge on the capacitor,

EJ = ϕ0I0 is the Josephson energy of the junction and Φ = ϕϕ0 is the flux across the

junction. Then by expanding the qubit energy term, we get:

H =
Q2

2C
− EJ(1− 1

2
(

Φ

ϕ0

)2 +
1

24
(

Φ

ϕ0

)4 +O((
Φ

ϕ0

)4). (II.6)

If we assume that the phase across the junction and its fluctuations remain small, we can

eliminate terms past the fourth order, and get:

H =
Q2

2C
+

1

2
LjΦ

2 − 1

24
(
I0

ϕ3
0

)Φ4 (II.7)

The linear part (first two terms) of this Hamiltonian is very similar to that of a harmonic

oscillator, so it could be quantized in the same canonical way [74]. We can write Q and Φ

in terms of the creation (a†) and annihilation (a) operators of the mode:

Φ =

√
h̄Z

2
(a+ a†)

Q =

√
h̄

2Z

(a− a†)
i

(II.8)
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where Z =
√
L/C is the characteristic impedance of the oscillator. Then take these equations

and substitute in Eq. II.7, we get:

H = ωaa
†a− I0

24ϕ3
0

(

√
h̄Z

2
)4(a+ a†)4 (II.9)

where ωa =
√

1/LC is the mode frequency. To simplify this Hamiltonian, we use the rotating

wave approximation to drop all the fast rotating terms like aaaa, aaaa†, aa†a†a†... in the

expansion of the fourth order term in Eq. II.9 (see next section for details about the rotating

wave approximation). So we are left with:

H = ωaa
†a− I0

16ϕ3
0

(h̄Z)2a†aa†a = ωaa
†a− χaaa†aa†a. (II.10)

Now it is clear that a transmon can be viewed as an anharmonic oscillator with the

anharmonicity χaa = I0
16ϕ3

0
(h̄Z)2. This form of anharmonicity is also known as a Kerr term

[75,76]. The energy levels of the transmon are no longer equally spaced, as shown in Fig. 3(b),

which provides the necessary frequency selectivity for it to be used as a qubit. The lowest two

enegry levels |g〉 and |e〉 can be used to encode the quantum information and manipulated

by microwave pulses with a bandwidth smaller than the anharmonicity. The notation for

anharmoncities/Kerr terms in our circuits can be a bit tricky. Since we’ll shortly need to

describe cross-Kerr terms we adopt the notation χij which would be the coefficient of a term

a†iaia
†
jaj (a cross-Kerr), and so the anharmonicity above is given the label χaa, which we’ll

also refer to as a self-Kerr.

The optical image of a transmon qubit is shown in Fig. 3(c). The qubit is fabricated

on a sapphire chip using E-beam lithography. The large pad serves both as the shunting

capacitor and and antenna to couple the transmon to other modes (usually a linear cavity),

which we will discuss in detail below. A SEM image of a transmon JJ is shown in Fig. 3(d),

where the junction is made using the Dolan bridge technique [77].

However, there is not much one could do with only a bare qubit in vacuum. To make

it a useful component for a quantum algorithm, it needs to be controlled and measured in

a certain way. In the case of cavity QED, people have an atom interact with a cavity. The

atom is isolated in this cavity with highly reflecting walls, like a box separating it from the

external world. The field of this box can be quantized into a set of harmonic modes, one of
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Figure 4: Summary of dispersive measurement. (a) Schematic of the dispersive

measurement. A transmon is capacitively coupled to a microwave resonator. The cavity

mode is represented as an LC-resonator. The qubit-cavity system is coupled to the external

environment through two ports, a weak port that is used to drive the qubit and a strong port

that is used to perform measurement. (b) Picture of all the components for a qubit-cavity

system. The qubit chip with transmon qubit fabricated on it is inserted in a 3D aluminum

cavity. The cavity is then placed in an aluminum shield that is inside another cryoperm

shield made with high µ metal to prevent external flux fluctuations. The whole system is

wrapped in mylar (not shown) and mounted at the base of a dilution fridge with a copper

sample holder. (c) Qubit chip inside the 3D cavity.

which will be on resonance with the transition between two levels of the atom and thus the

atom can be manipulate with a laser beam at proper frequency while we can also measure
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the state of the atom by observing its spontaneous emission. Similarly in the circuit QED,

we have an artificial superconducting atom (qubit) couple to a microwave cavity as shown in

Fig. 4(a). Compare to the cavity QED, our system can benefit from a way stronger qubit-

cavity coupling as it is easy to integrate a coupling antenna for the superconducting qubit.

Now the qubit is weakly coupled to a microwave cavity with a large detuning in frequencies

between them (thus in the dispersive regime with g � ∆). Here g is the coupling strength

between the qubit and cavity, whose expression will be clear in below and ∆ is the frequency

difference between the qubit and cavity. The cavity then couples to the transmission line

strong enough to enable the readout, but now the life time of a qubit is protected by the

Purcell effect since κq = (g/∆)2κc, where κq and κc are the bandwidths of the qubit and

cavity mode respectively that relate to the life time of the mode by: Tq,c = 1/κq,c. The

control of the qubit is realized with another weak port of the system that is so weakly

coupled to the transmission line that barely allows the control pulses to be sent to the qubit

while not causing too much damage to its lifetime. To see how a dispersive measurement

works, we can write down the Hamiltonian in terms of flux and charge, as:

H = (
Q2

1

2

1

CJ + (CJ ||CR)
− EJcos(

Φ1

ϕ0

)) + (
Q2

2

2

1

CR + (Cc||CR)
+

Φ2
2

2LR
)

+Q1Q2
Cc

CRCJ + CJCc + CcCR

(II.11)

where CJ , CR and Cc are the capacitance for the shunting capacitor of the junction, capacitor

of the readout resonator and the coupling capacitor, respectively, LJ is inductance of the

resonator inductor, Φ1,2 are the fluxes across the junction and linear inductor respectively,

Q1,2 are the charges on the shunting capacitor and resonator capacitor respectively and the

symbol || means to add in parallel. Based on this expression, we can further write down

the Hamiltonian using the creation and annihilation operators using the same quantization

technique as before and get (following in part a derivation in [59]:

H = ωaa
†a− EC

12
(a+ a†)4 + ωbb

†b+ gab(a
†b+ ab†) + gab(ab+ a†b†) (II.12)
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with

g =
1

2

√
ωaωq

Cc√
(CR + Cc)(CJ + Cc)

(II.13)

Ec =
e2

2(CJ + (Cc||CR))
(II.14)

where a(a†) and b(b†) are the annihilation (creation) operators of the qubit and cavity mode

respectively, ωa,b are the bare mode frequencies for and gab is the coupling strength between

the two modes. We again use the rotating wave approximation to simplify the Hamiltonian

by eliminating the fast rotating term gab(ab+a†b†). The remaining coupling term introduces

a dressing that will redefine the two bard resonant modes. Set aside the anharmonic term

and we can diagonalize the linear part of the Hamiltonian: H = ωaa
†a+ωbb

†b+gab(a
†b+ab†).

This will give us the two dressed modes, with creation and annihilation operators given by:a
b

 =

λa µa

λb µb

A
B

 (II.15)

with

λa µa

λb µb

 =

−gab
√

1+ 1

4g2
ab

(∆+
√

4g2+∆)2

4g2+∆2 −∆−
√

4g2+∆2

2

√
1+ 1

4g2
ab

(∆+
√

4g2+∆)2

4g2+∆2

gab

√
1+ 1

4g2
ab

(∆−
√

4g2+∆)2

4g2+∆2

∆+
√

4g2+∆2

2

√
1+ 1

4g2
ab

(∆−
√

4g2+∆)2

4g2+∆2

 (II.16)

where ∆ = ωb − ωa is the difference between the bare resonator frequencies and A(A†) and

B(B†) are the annihilation (creation) operators for the new dressed mode. Then the linear

part of the Hamiltonian can be written in the new dressed basis as:

H = ωAA
†A+ ωBB

†B (II.17)

with

ωA =
1

2
(ωa + ωb −

√
4g2 + ∆2) (II.18)

ωB =
1

2
(ωa + ωb +

√
4g2 + ∆2) (II.19)
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where ωA and ωB are new dressed frequencies. The we can return to the anharmonic term

χaaa
†aa†a where now a and a† need to be replaced with the new dressed operators. So the

new Hamiltonian will be:

H = ωAA
†A− χAAA†AA†A+ ωBB

†B − χBBB†BB†B + χABA
†AB†B (II.20)

with

χAA = −Ec
2
λ4
b (II.21)

χBB = −EC
2
µ4
b (II.22)

χAB = −EC
2

(4λ2
bµ

2
b) (II.23)

where χAA and χBB are the new anharmonicities for the new dressed mode and χAB is the

dispersive shift between the two modes. These three non-linear coefficients are connected

by χAB = −2
√
χAAχBB. A typical choice of qubit frequency is ωA/2π = 4 ∼ 10 GHz with

anharmonity χAA/2π = 160 ∼ 200 MHz, for cavity frequency is ωB/2π = 5 ∼ 10 GHz (but

is detuned by many gigahertz from the qubit frequency to stay in the dispersive regime)

with a small self Kerr χBB ∼ 1 KHz and finally for the dispersive shift χAB = 0.1 ∼ 10 MHz

depends on the experimental requirements. To see how the dispersive measurement works,

we can re-arrange the terms in Eq. II.20 and get:

H = ωAA
†A− χAAA†AA†A+ (ωB − χABA†A)B†B. (II.24)

We neglect the small Kerr term for the cavity mode. The above derivation shows that for a

qubit-cavity system with a dipole-dipole coupling, it can be reduced to a dispersively coupled

system in a new dressed basis under the RWA, provided the coupling strength is much weaker

than the detuning between the mode frequencies (g � ∆). In the new dressed system, both

eigenstates have mixed with the bare qubit mode and bare cavity mode due to the mode

hybridization, but one is more ‘qubit’ like (with an almost undiminished anharmonicity)

and the other is more ‘cavity’ like (inheriting only a small anharmonicity) due to the weak

coupling strength. And by absorbing the dispersive term into the coefficient of B†B, we can

see the effect of this coupling, that is, that state of the qubit will change the frequency of
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the cavity as shown in Fig. 4(a). Thus by monitoring the frequency change of the cavity, we

could then infer the state of the qubit.

In circuit QED, we engineer the system with the help of hybridization of modes and the

nonlinearity of Josephson junctions. In the dispersive Hamiltonian considered above, the

capacitive coupling between the qubit and cavity provides the mode hybridization. The new

basis in the dressed system after the hybridization contains both the bare qubit and cavity

modes which then spreads the anharmonicity of the qubit to the coupling between the new

dressed modes. As we will see later in the SNAIL example in Ch. II, we can apply the same

technique to create third order couplings between modes of the system.

C. Rotating wave approximation and parametric coupling

In the derivation of the qubit and the dispersive Hamiltonian, we drop the terms that will

not survive the rotating wave approximation. Taking the case of the qubit as an example,

where we start with Eq. II.9 and discard terms to arrive at Eq. II.10. That is, the term

(a + a†)4 is simplified to a†aa†a using the rotating wave approximation (RWA). The usual

argument given is that terms which do not conserve energy, e.g. aa which removes a pair of

photons from the a mode, don’t act, or, put another way, oscillate at frequencies far from the

frame of the qubit and so average out. This effect can be seen clearly by moving the system

to a rotating frame with the rotation operator R = exp(−iωaa†at) chosen to oscillate at

the negative of the qubit frequency. The transformation of the Hamiltonian with a unitary

operator is given by:

H ′ = UHU † + ih̄U̇U †. (II.25)

The nonlinear part of the qubit Hamiltonian ((a+ a†)4) under this transformation becomes:

R(a+ a†)4R† = (ae−iωat + a†eiωat)4

= Σn+m=4 cij(a)n(a†)meiωt(m−n)
(II.26)

where cij are the coefficients for the corresponding term in the expansion of the fourth term.

Note that when (m 6= n), the term will carry a coefficient that rotates with a frequency at the
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order of gigahertz (∼ ωa), whereas the qubit state itself now evolves with a center frequency

of zero. Picking which terms are far enough in frequency/whose effect will be averaged away

is the essence of the RWA (and a major source of peril in complicated systems where there

are terms that are safe, not so safe, and absolutely a bad idea but still probably discarded

by an incautious experimenter). In the example given, after applying the RWA we are left

with the term with n = m = 2, which is the non-linear term in Eq. II.10.

Figure 5: A child on a swing. The child is parametrically driving the swing by periodically

standing and squatting to vary the moment of inertia of the swing as a pendulum. When

the swing is driven at twice of the frequency of its oscillations, a ‘gain’ process is triggered,

that is the amplitude of the swing’s oscillation is increased.

This example inspires a thinking that if we want to look at which terms can survive in

the RWA, they are basically the terms of products of number operators, as the case in the

Kerr terms.

In another way, this means that an odd order term in the Hamiltonian seems to be

doomed in the RWA as there will always be a single operator left behind after we factor out

the number operators.

25



𝑄𝑎
𝛷𝑎

𝑄𝑏

𝛷𝑏

𝑄𝑐
𝛷𝑐

3-mode 
coupler

Figure 6: Schematic of three-wave coupling. Three linear modes (demonstrated as LC

resonators) are hybridized via a three-mode coupler. With the hybridization, non-linearity

distributes among the three modes, creating the desired third-order coupling term.

However, when we add drives to the system, we can utilize these non-rotating terms to

produce important controls on our system which will survive the rotating wave approxima-

tion. We refer to these drives and the Hamiltonian terms they produce as ‘parametric’. This

term has real meaning for some cases, such as for a child on a swing as shown in Fig. 5. In

this example, we think of the child + swing as a pendulum system and as the child changes

their body position and/or swings their legs they are changing a physical parameter of the

system, namely its length (the distance from the pivot point to the center of mass) [78].

For electrical circuits, one can also make a physical analogy to, for instance, parametrically

varying a mutual inductance between two modes [79].

To better explain a standard parametric process in our laboratory, we can start with a

simple but useful example shown in Fig. 6. Imagine we have three simple harmonic modes,

although we demonstrate them as simple LC circuit in the figure, they could also be the

modes in other platforms like ion trap, optical photons or electric spins. Then, consider

a three-mode coupler that couples these modes together, again, we are using the junction
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based device for the coupler, but there are implementations using diodes, opto-mechanics

couplers and optical fibers. In terms of the Hamiltonian, the purpose of the coupler is to

provide an three-wave mixing interaction Hamiltonian term:

Hint = h̄g3ΦaΦbΦc (II.27)

where g3 is the coupling strength between the modes. If we rewrite them in terms of creation

and annihilation operators using the similar quantization technique in Eq. II.8, we get:

Hint = h̄gabc(a+ a†)(b+ b†)(c+ c†) (II.28)

where gabc = g3

√
h̄Za

2

√
h̄Zb

2

√
h̄Zc

2
is the new coupling strength with the correction from

the quantization coefficients. As we see in the case of fourth order terms, if none of the

combinations of mode frequencies ±ωa, ±ωb and ±ωc is zero (which is the case for most of

the mode frequency choices), then Eq. II.28 will not survive the RWA. However, if we can

parametrically pump one of the modes, say, mode c at a special frequency that is also far

detuned from its eigenfrequency ωc. Then this pump can be considered as ‘stiff’, meaning

that we can replace the operator by its classical average [80]:

c→ 〈c〉e−i(ωpt+φp) (II.29)

where ωp is the pump frequency and φp is the phase of the pump. If we substitute this into

the interaction Hamiltonian in the rotating frame, we get:

H ′int = h̄gabc(ae
−iωat + a†eiωat)(be−iωbt + b†eiωbt)(〈c〉e−i(ωpt+φp) + 〈c〉ei(ωpt+φp)). (II.30)

shows that it takes one pump photon and creates a pair of photons in a and b modes.

Then by carefully choosing the pump frequency ωp we can select the desired parametric

process to survive the RWA.

Here we consider two single pump cases, the ‘gain’ and ‘conversion’ processes, where we

applied the pump at the frequency ωp = ωa + ωb and ωp = ωa − ωb, respectively. Under the

RWA, the Hamiltonian in Eq. II.30 can be reduced to the effective two-body Hamiltonian:

HG = h̄gabc〈c〉(abeiφp + a†b†e−iφp) (II.31)

HC = h̄gabc〈c〉(ab†eiφp + a†be−iφp) (II.32)
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In the gain process, the term (a†b†〈c〉e−iφp) that comes from a†b†c shows that pump photons

are destroyed to create photon pairs in mode a and b and therefore leads to an amplification

in the two modes. Similarly for the conversion process, (ab† + a†b) gives a photon swapping

term between the two modes, thus converting (or swapping) the photon from one mode to

another, and vice versa. This heuristic argument shows that the parametric pumps can select

out parametric processes.

Although parametric drives give us the access to the desired parametric processes, we

also need to pay attention to not activating other undesired parametric processes by acci-

dent. Those terms usually come from the higher order terms in the system that will also

survive the RWA with the presence of the parametric drives. One example is the effect of the

fifth order term, such as gabcccc
†c(abc† + a†b†c), now with the drive we are effectively adding

a change to the coupling strength for the third order term through gabccc|〈c〉|2. These higher

order terms are natural in our Josephson Ring Modulator (JRM) and Superconducting Non-

linear Asymmetric Inductive eLement (SNAIL) circuits, and can limit the performance of

the device. We are working to understand their effects and eliminate them with better

Hamiltonian engineering [81,82].

A related issue is the effect of dispersive terms in the system due to large numbers of

pump photons. For simplicity, let us consider a cross Kerr term between the pump mode

c and mode a: gaacca
†ac†c. This term becomes gaacc|〈c〉|2a†a with the drive, by combining

this to the linear part of this mode ωaa
†a, we note the effect of the drive is to create a

pump dependent frequency shift in mode a. This creates extra difficulties when we try to

implement multi-parametric pump protocols (see Ch. IV and Ch. VI).

D. The Josephson Parametric Converter

In this section, we introduce how to use the parametric coupling technique with actual

device: Josephson Parametric Converter (JPC). A JPC is a three-wave mixing device, that

can be operated both as an amplifier and a coherent converter. The three-wave mixing

coupling is provided by the Josephson ring modulator (JRM), the core part of the JPC. The
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JRM is formed by four identical junctions in a loop and is then placed at the center of two

λ/2 resonators as shown in Fig. 7(a). These resonators are capacitively coupled to external

transmission line to allow the control and pump of the device. There are three accessible

modes of a JRM that we label as a, b and c, as shown in Fig. 7(b). For a detailed analysis of

the eigenmode of a JRM, please see reference [80,83]. The Hamiltonian for a JRM is given

by:

HJRM = −4EJ(cos(
ϕa
2

)cos(
ϕb
2

)cos(ϕc)cos(
ϕext

4
))

− 4EJsin(
ϕa
2

)sin(
ϕb
2

)sin(ϕc)sin(
ϕext

4
)

(II.33)

where the EJ is the Josephson energy of each junction, ϕi is the reduced flux of each mode

and ϕext is the reduced external flux that goes through the JRM. For small fluxes, ϕa,b,c � 1,

we can expand this Hamiltonian and get:

HJRM = EJcos(
ϕext

4
)(
ϕ2
a

2
+
ϕ2
b

2
+ 2ϕ2

c − 4)

− EJsin(
ϕext

4
)ϕaϕbϕc

(II.34)

where the first term on the left represent the linear inductance energy of the JRM and will

be absorbed into the linear part of the JPC’s full Hamiltonian. The second term on the left

provides the desired the three-wave mixing term as in the Eq. II.27.

As discussed previously, two simple parametric processes involving two coupled modes

are phase-preserving gain and conversion. To understand theses processes in the JPC (first

described in Ref. [84,85], we need to start with the full Langevin equations of motion for the

system (use mode a as an example):

da(t)

dt
=
i

h̄
[H, a(t)]− κa

2
a(t) +

√
κaain(t) (II.35)

where κa is the bandwidth of mode and ain is the incoming waves in the external transmission

line that couples to the JPC. It is related to the outgoing waves aout and the JPC’s internal

mode a via the input/output relation [86]:

√
κaa(t) = ain(t) + aout(t) (II.36)
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Figure 7: Summary of the Josephson Parametric Converter. The Josephson Para-

metric Converter (JPC) is made with a Josephson Ring Modulator (JRM), a ring consisting

of four identical junctions, placing in the middle of two λ/2 microstrip resonators. The de-

vice is capactively coupled to the external transmission lines to allow the measurement and

pump of the modes. (b) Eigenmodes of a JRM. A JRM can support three accessible modes

with different voltage configuration. (c) An SEM picture of the JRM used in the JPC. Like

the junction in the qubit, JRM is also fabricated using Dolan bridge technique. (d) Picture

of all the components for a JPC. The silicon chip with JPC is placed in a copper sample box

which is mounted on a copper sample holder with a magnetic coil attached to it. The sample

box is then placed in an aluminum shield that is inside another cryoperm shield made with

high µ metal to prevent the external flux fluctuations.

Now let us start with the gain process, with the interaction Hamiltonian given in Eq. II.31,

we get the Langevin equation:

da(t)

dt
= −iωaa(t)− igabcb†(t)〈c〉e−iφp −

κa
2
a(t) +

√
κaain(t) (II.37)

db(t)

dt
= −iωbb(t)− igabca†(t)〈c〉e−iφp −

κb
2
b(t) +

√
κbbin(t) (II.38)

To solve this equation, we can take a Fourier transform on both side and substitute in the
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input/output relation, we get:

(iω1 − iωa −
κa
2

)aout[ω1]− igabc〈c〉
√
κa
κb
〈c〉e−iφpb†out[−ω2] =

(iωa − iω1 −
κa
2

)ain[ω1] + igabc〈c〉
√
κa
κb
e−iφpb†in[−ω2] (II.39)

(−iω2 + iωb −
κb
2

)b†out[−ω2] + igabc〈c〉
√
κb
κa
〈c〉eiφpaout[ω1] =

(−iωb + iω2 −
κb
2

)b†in[−ω2]− igabc〈c〉
√
κb
κa
eiφpain[ω1] (II.40)

where we use ω1 and ω2 as the frequency variables in the Fourier transform for mode a and b,

respectively. By solving this linear equation group, we are able to get the scattering matrix

for the system:

 aout[ω1]

b†out[−ω2]

 =

 S11 S21e
−iφp

S∗21e
iφp S22

 ain[ω1]

b†in[−ω2]

 . (II.41)

If we consider the on resonance case, where ω1 = ωa and ω2 = ωb, we can get a relative

simple expression for the scattering matrix elements:

 aout[ω1]

b†out[−ω2]

 =

 √
G −i

√
GT e

−iφp

i
√
GT e

iφp
√
G

 ain[ω1]

b†in[−ω2]

 (II.42)

with a reflection gain

G =
1 + ρ2

1− ρ2
(II.43)

and a trans-gain

GT =
2ρ2

1− ρ2
= G− 1 (II.44)

where ρ is the dimensionless pump parameter:

ρ =
gabc〈c〉√
κaκb

(II.45)

for the detailed expression of G(ω) and GT (ω) for the off resonance case, see reference [87].
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Figure 8: Gain and conversion process of a JPC. Two single-pump parametric pro-

cesses in a JPC. The JPC can be operated in the amplification mode and converter mode

with the pump frequency of ωp = ωa+ωb and ωp = ωa+ωb respectively. In the amplification

mode, on resonance signal receives a reflection power gain of G and a transmission power

gain of G − 1. In the converter mode, on resonance signal receives a unit conversion from

one mode to another.

The scattering matrix for the conversion process can be obtained with the same method

using the interaction Hamiltonian in Eq. II.32. The on resonance scattering matrix for this

process is:

aout[ω1]

bout[ω2]

 =

 √1− C i
√
Ce−iφp

−i
√
Ceiφp

√
1− C

ain[ω1]

bin[ω2]

 (II.46)
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with conversion coefficient:

C =
4g2

abc〈c〉2/(κaκb)
(1 + g2

abc〈c〉2/(κaκb))2
. (II.47)

A summary of the gain and conversion processes is shown in Fig. 8. Note that one important

difference between conversion and gain is that conversion does not conjugate the transmitted

signal, and the gain process does. This is seen by the output scattering component for trans

gain being at b†out[−ω2]. This has several consequences. First, when driving a JPC mode

off-resonance, let us assume on mode a, at detuning +∆, the second (idler) tone produced by

the gain process in mode b will be at −∆, whereas the conversion process produces converted

photons at +∆ in mode b. More, the phase of the input signal will be reversed in the gain

process (the dagger operator acting like a complex conjugate only for semiclassical fields).

For simple reflection gain (the most common use of a JPC), these details can be ignored,

but in the following discussion of two-mode squeezed light and the interferometric qubit

measurement detailed in Chapter III.

E. Two-mode squeezed light generated from a JPC

For the parametric amplifiers like the JPC, there are a few key metrics, such as a large

amplification bandwidth, a high saturation power and a good measurement efficiency. A

large amplification bandwidth is useful when the experiment needs to multiplex multiple

channels in the measurement. This requirement can be lifted if the experiment only involves

one measurement channel. The saturation power means the highest the power the amplifier

can handle before the gain starts to drop and the signal begins to distorted. This has been an

ongoing challenge since the higher order terms will shift the mode frequencies and modulating

the effective coupling strength, as we discussed above (also see in references [82,88,89]).

The efficiency of an amplifier is limited by its added noise, which ideally should be

one half-photon for phase-preserving amplifiers and zero for phase-sensitive amplifiers on

resonance [53,90].We can see from Eq. II.39 that there is a creation of b mode photons in the

equation of motion for the a mode (and vice versa), which comes from the three-wave mixing
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term in the JPC Hamiltonian. So, vacuum fluctuation from the b mode will always be added

to the amplified signal in a mode, even if there is no input on the b mode. This added noise,

as Caves pointed out [53], is a fundamental requirement from quantum mechanics for all

the phase persevering amplifiers like JPC and thus puts a limit on the signal-to-noise ratio

(SNR) for a certain measurement strength. The presence of internal losses in the amplifier

will effectively send part of the quantum information in the signal to an un-monitored channel

(and allow fluctuations in that channel to couple back into the amplified signal), and thus

cause a decrease in the total measurement efficiency. This issue can be potentially improved

with better fabrication process that yields higher internal quality factor. It is also possible

that unwanted parametric couplings and nonlinearity can result in overproduction of noise

in our amplifiers, though we do not have direct evidence that this is an issue.

This concept, that amplifiers ‘add noise’ makes perfect sense if the concept of measure-

ment is to gain knowledge of an input signal. In particular, if we view a phase-preserving

amplifier as allowing us to view the quadratures, (I,Q), of a propagating microwave field, the

fact that [I,Q] 6= 0 prevents us from gaining perfect knowledge of both quadratures simul-

taneously, and Cave’s quantum limit can be thought of as the minimum added fluctations

to these quantities to satisfy the commutation relation.

However, we can instead ask ‘what kind of light does an amplifier produce’. In that

case, we are not simply interested in the signal output of the amplifier, but in the total

state of both outputs. From that viewpoint, we discover that the output of an undriven

phase-preserving amplifier with two explicit ports such as the JPC is two-mode squeezed

(TMS) light [91–93].When operating in the gain mode, the Hamiltonian of a JPC is:

HJPC

h̄
= ωaa

†a+ ωbb
†b+ ωcc

†c+ g3(a†b†c+ abc†), (II.48)

As we discussed above, the phase-preserving amplification is achieved by applying a strong

microwave drive to the common mode at frequency ωp ' ωa+ωb. The Hamiltonian will reduce

the three-wave mixing term to an effective two-wave coupling term between the signal and

idler mode: g3 〈c〉 (eiφpa†b† + e−iφpab). This two-mode Hamiltonian can also be described

by the two-mode squeezing operator [92, 93]: S = exp(re−iφpab − reiφpa†b†), where reiφp

is the complex squeezing parameter with the squeezing strength r = cosh−1
√
G [94, 95] as
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Figure 9: Generation of two-mode squeezed light with JPC. (a) Schematics of the

generation of TMS light with JPC. By applying a stiff drive to the JPC’s common mode

at summation frequency of signal and idler mode, the independent vacuum fluctuations on

the input ports will be turned into a tightly correlated quantum state: two-mode squeezed

state. When measuring each mode separately, it behaves like the thermal state, see plot of

(Ia, Qa) and (Ib, Qb). What is actually squeezed is the correlation relations between the two

modes, see plot of (I+, Q−) and (I−, Q+). (b) The hist plots of data for Ia, Qa, Ib, Qb, I± and

Q±, corresponds to the theoretical plots in (a), respectively.

shown in Fig. 9(a). For TMS light, each mode behaves like a thermal state when observed

separately; what is actually squeezed is their correlation relation. That is, if we measure

mode a and get a result of Ia0, Qa0 (the red dot in Fig. 9(a)), since now the correlation

between Ia, Qa, Ib and Qb is set up to the limit given by the squeezing strength, we will
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be able to predict the result of the measurement for mode b to be a gaussian distribution

centered at Ib0, Qb0 (the blue dot in Fig. 9(b)) with a characteristic width corresponding to

1/2 photon. Put another way, the signal and idler output modes of the JPC produce light

which is random in time but correlated to the last half photon [96]. We can perform a such

measurement on our JPC, a typical data set is shown in Fig. 9(b). Note that the cross-

correlations are not as fine as the ultimate limit of a half-photon as this correlation is after

the amplifier. Observing this fully would require yet another quantum limited amplifier to

lift these correlations above the added noise of the rest of the amplification chain, in practice

we don’t do this and so the ultimate limit in observed fluctuations is dominated by the noise

of the HEMT amplifier at 4 K. Nevertheless, the good agreement between the experiment

and the theoretical result shows that the JPC, or any other non-degenerate phase-preserving

amplifier, can also serve as a generator of two-mode squeezed light with both spectral and

spacial non-degeneracy [97,98].

The central question about TMS I pursue in this thesis is to determine whether it can be

used as a tool for measurement. Perhaps alternately, if we perform a quantum measurement

using TMS light as a resource, what can we learn about the light our amplifiers produce?

As our TMS light necessarily involves two modes, the measurement apparatus takes the

form of an interferometer using two JPCs, the first to produce TMS light, and the second

to recombine and further the two halves of the squeezed light to produce the measurement

output. This is the focus of Chapter III, where we follow a modified version of a proposal

by Barzanjeh et al. [99].

F. The Superconducting Nonlinear Asymmetric Inductive eLement

The Superconducting Nonlinear Asymmetric Inductive eLement(SNAIL) was recently

introduced by Devoret group at Yale University [100]. It is designed to be a dipole circuit

element with third order nonlinearity and little or no fourther order nonlinearity. As shown

in Fig. 10, the SNAIL is a superconducting loop of n Josephson junctions (here n = 3 in

our case) and a single smaller junction. The whole loop is threaded with magnetic flux Φext.
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The Hamiltonian for the SNAIL is:

HSNAIL = −αEJcos(ϕ)− 3EJcos(
ϕext − ϕ

3
) (II.49)

where EJ and αEJ are the Josephson energies for the large and small junctions, respectively,

ϕ is the reduced the flux across the small junction and ϕext = Φext/ϕ is the reduced external

flux. Note here we assume the flux across each large junction is the same. Then, by numer-

ically minimizing the energy in Eq. II.49, we can Taylor expand this Hamiltonian near the

minimum ϕmin:

H = EJ(c2(ϕ− ϕmin)2 + c3(ϕ− ϕmin)3 + c4(ϕ− ϕmin)4 + ...) (II.50)

where the coefficients for each order are functions of α and ϕext: ci = ci(α, ϕext). Then, with

a proper choice of α and ϕext [100, 101], we can find an optimal bias point, where c3 6= 0

while c4 = 0 at which the SNAIL provides a close to ideal third order mixing element.

(a) (b)

2 um

Figure 10: The SNAIL. (a) Circuit schematic of a SNAIL. The SNAIL is a loop of three

large junctions and a single small junction. The whole loop is threaded with magnetic flux.

(b) A SEM image of a SNAIL. The small junction is on the left (central bright overlapping

region), and the three junctions are on the write (middle 3 of the 5 visible rectangles). Note

that we couple the leads as close as possible to the small junction to avoid the effects of stray

inductance.
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This behavior is also available in linearly shunted JRMs [81,102], which have the further

advantage of three orthogonal modes to the SNAILs one. However, the SNAILs single mode

is actually a tremendous advantage in practice, as we can simply print a snail in a given

mode of whatever form to gain third order couplings. To couple multiple modes together to

create trans-third order couplings (e.g. gsas, where a is some linear mode and s the SNAIL

mode), we make use of hybridization (see method in Ch. V.B). This produces necessarily

weaker terms, and more than are typically wanted (the above example also produces gsaa

and gaaa), but we are finding in our experiments that this is less of a problem than finding

ways to connect three modes to the 4 ports of JRMs.

The SNAIL device have a large range of applications. In other recent work in the lab,

the SNAIL has been used to replace the JRM in the JPC so that we can form new amplifiers

with an arbitrary number of modes, see Fig. 11(a) (for example four which is not readily

achievable wit ha single JRM), while still being operated at a fourth order suppression point.

This creates a device very suitable to work with multi-pump protocols that could lead to

a directional amplifiers [103, 104]. My colleague T.-C. Chien has christened this design the

SHARC amplifier (like the SNAIL the acronym is primarily chosen to produce a neat animal

name, so I won’t bother naming it here) based on this idea and promising data has been

observed [81].

Another possible application for the SNAIL is to add a shunting capacitor to make it a

‘SNAILmon’ like we did for the transmon qubit. Then the SNAILmon is self can be used as

a non-linear Kerr resonator to generate Schrödinger cat state [105] or to have it couple to

other qubit/resonator systems, to implement a two-qubit gate [38] by driving the third order

term, see Fig. 11(b). We could also use the SNAIL to couple a few high-Q cavity modes

together, see Fig. 11(c). Then by driving the conversion processes between these mode, we

could transfer the information around these modes and thus create a quantum signal router.

This router could be an important part for future modular quantum computers.

In this thesis, in Ch. IV and Ch. VI we will introduce a bath engineering project realized

by coupling a transmon qubit to a SNAILmon, see Fig. 11(d). The idea of bath engineering

is to design a certain coupling between the system and a dissipative bath to engineer an

unusual effective qubit dissipation which can be used to perform a useful task. Using the
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Figure 11: Applications of SNAILs (a) A Superconducting Hybridized ARbitrary Cavity-

based (SHARC) amplifier. The amplifier is based on the SNAIL induced three-wave coupling

between three low-Q linear modes. (b) An implementation of a two-qubit gate by couling a

‘SNAILmon’ to a transmon and parametrically drive the third order term in the system [38].

(c) Use the SNAIL to couple several high-Q cavity mode and drive the conversion process

from the SNAIL can create a quantum signal routers which could be an important part in

a modular quantum computer. (d) Engineering the system-bath interaction by having the

high-Q transmon qubit couple to a lossy bath mode through a SNAIL. This will be the focus

of my second project in Ch. IV and Ch. VI.

SNAIL as a dissipative bath, we introduce a three-wave parametric coupling between the

system and the bath. As in the case of JPC, we can drive the ‘gain’ and ‘conversion’ process

to tune the rate that the system thermalizes to the bath. As we are using the transmon
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qubit as the system, we are in fact controlling the thermalization process of a microwave

photons. Then, the ability of setting the thermal state distribution of such system is as if we

have effective created a chemical potential for the system, which does not exist for a natural

photonic system. This theory is worked out in great detail in Chapter IV, and experimental

data are shown in Chapter VI.

G. Measurement back-action and weak measurement protocol

A quantum measurement will perturb the state of the qubit. This perturbation is known

as the back-action of the measurement. For a measurement performed with ideal quantum

hardware, the qubit will still be in pure state after the measurement, as the evolution of the

state can be perfectly tracked from the measurement record. As we introduced in Sec. I.C, in

order to measure a qubit in the state |ψ〉 = cg |g〉+ce |e〉, we send a coherent light probe signal

to the qubit-cavity system. After the probe signal traverses the cavity, the coherent light and

the qubit form a new entangled state together: |Ψ〉 = cg |g〉 |αg〉+ce |e〉 |αe〉. Here |αg,e〉 is the

transmitted coherent state when the qubit is the ground or excited state, respectively. This

new entangled state will serve as the pointer state of the system and will be sent through a

quantum-limited amplifier so the signal can be received and processed at room temperature.

Typically, in our lab a phase-preserving amplifier (JPC) is used.

The effect of the back-action of a phase-preserving measurement is illustrated in Fig. 12.

Each shot of outcome will contain the measurements of both quadrature of the output

mode, which we denote as (Im, Qm). This I-Q pair will be used to determine the state of

the qubit after the measurement and as been pointed out in Ref [54,106], it contains all the

information to track the state evolution of the qubit (provided the measurement is lossless).

That is, we can reconstruct the Bloch vector for the qubit after the measurement given the

measurement result (Im, Qm). However, in an actual experiment, there will also be losses.

Therefore, we introduce the concept of measurement efficiency η as in Eq. I.1 as a way to

measure how much quantum information is collected by the observer. As an example, for a

qubit that is initially prepared in the state |+y〉 = (|g〉+|e〉)/
√

2, the final qubit Bloch vector

40



(xf , yf , zf ) is a function of measurement outcome (Im, Qm)(for simplicity we will neglect the

qubit decoherence and the all losses before the quantum-limited amplifier). Hatridge et al.

[54] find:

xf (Im, Qm) = sech(
ImĪm
σ2

)sin[
QmĪm
σ2

+
Q̄mĪm
σ2

(
1− η
η

)]e−
Ī2m
σ2 ( 1−η

η
) (II.51)

yf (Im, Qm) = sech(
ImĪm
σ2

)cos[
QmĪm
σ2

+
Q̄mĪm
σ2

(
1− η
η

)]e−
Ī2m
σ2 ( 1−η

η
) (II.52)

zf (Im, Qm) = tanh(
ImĪm
σ2

) (II.53)

where Īm, Q̄m and σ are the center and standard deviation of 2D Gaussian distribution cor-

responding to the coherent measurement pulse. The above results indicate that by observing

the measurement back-action, we can obtain the measurement efficiency as a parameter to

assess the quality of the measurement apparatus.

We use the pulse sequence shown in Fig. 13 to obtain the measurement back-action.

We first use a strong projective measurement and record the data from which we will post-

select to pick out the runs with qubit found in the ground state. Next, we rotate the

qubit into the |+y〉 state with a π/2 pulse. Then, we deliberately apply a measurement

with a strength weaker than the projective measurement, and record the result. Finally,

we do full tomography on the qubit state to determine its Bloch components with another

projective measurement. To get the back-action result for a certain weak measurement

outcome (Im, Qm), the Bloch components of the qubit (〈x〉c, 〈y〉c, 〈z〉c) is calculated from

the tomography result conditioned recording that specific weak measurement result in a

finely-binned histogram.

A theoretical result is shown in Fig. 14. When the measurement strength is weak, the

ground and excited state distribution largely overlap with each other. Their separation

will increases as the measurement strength (or SNR) increases. For the strong measurement

case, by definition the two distributions are well separated. The conditional tomography data

〈X〉c, 〈Y 〉c and 〈Z〉c versus measurement outcome (Im/σ, Qm/σ) is also shown in the figure.

When the measure strength is weak, the qubit state receives minimal perturbation from the

measurement, with the outcomes corresponding most probably to Bloch vectors along the

+y direction. In practice, any outcome is possible, but in practice outcomes which are very
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improbable require too many measurements to be practically observed, and so we truncate

the theory and set all points to gray which are more than XX σ away from the centers of

the two gaussian blobs. We can also see the gradients in 〈X〉c along the Qm axis and 〈Z〉c
along the Im axis, indicating the back-action of the measurement. In an actual experiment,

after getting these back-action data with this weak measurement protocol, by looking at the

conditional tomography results and fitting the x- and y- back action for outcomes where the

z-component is zero (here Im = 0) to the theory, we can extract the measurement efficiency

as a single fit parameter by comparing the frequency of oscillation (which we can extract

from the histogram) to the amplitude of oscillations using the theory expression above.

When the measurement is strong, the qubit is then projected to +z direction for positive

Im values and −z direction for negative Im values. The oscillations in 〈X〉c and 〈Y 〉c (where

the z back-action is weak), are still visible very near Im = 0 but are both very improbable

(hence nearly being pinched off by our chosen cutoff in the graphs) and very quickly varying

which will be almost impossible to detect in a practical lossy environment with a reasonable

number of repititions of the protocol. Note here that we have set a relatively ’weak’ projective

measurement to make this effect more visible, in practice we would like SNRs which are even

higher.
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Figure 12: Bloch sphere representation of measurement back-action. This graphic

is adapted from [54]. Bloch sphere representation of the back-action on the qubit state of

a phase-preserving measurement. After a measurement with outcome (Im, Qm), the qubit

can be found in the state Sf = (xf , yf , zf ), with Im encoding information of the projection

of the qubit along z direction. Qm contains the information of the other component of the

back action, which is parallel to z× Si.
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Figure 14: Theory result for the measurement back-action. Theory results for the

back-action of a ‘weak’ (Īm/σ = 1.0) and ‘strong’ (Īm/σ = 3.0) measurement. The three

histograms are showing 〈X〉c, 〈Y 〉c and 〈Z〉c versus the associated (Im/σ, Qm/σ) bin.
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III. Qubit measurement with two-mode squeezed light

A. Overview

Fault-tolerant quantum information processing with flawed qubits and gates requires

highly efficient, quantum non-demolition (QND) qubit readout. In superconducting cir-

cuits, qubit readout using coherent light with fidelity above 99% has been achieved by using

quantum-limited parametric amplifiers. However, further improvement of such measurement

is fundamentally limited by the vacuum fluctuations of the coherent light used for readout.

In this chapter, we demonstrate the use of two-mode squeezed (TMS) light instead of coher-

ent light and phase-preserving amplifier combined into an interferometer for dispersive qubit

readout, as proposed in Ref. [99]. This measurement scheme is based on a Mach-Zehnder

interferometer with active non-linear beam splitters which is commonly known as a SU(1,1)

interferometer [107]. Such a measurement scheme implemented in our experiment shows a

44 % improvement in power SNR compare to the usual coherent light readout. Using the

weak measurement protocol introduced in CH. II, we also investigate the back-action of the

two-mode squeezed light measurement and and found, surprisingly, that tuning the inter-

ferometer to be as unprojective as possible was associated with an increase in the quantum

efficiency of our readout relative to the optimum setting for projective measurement.

This chapter is organized as follows: we begin in Section III.B and Section III.C by

introducing the experimental setup and the basic parameters of our sample. Then in Sec-

tion III.D, we demonstrate the generation and interference of TMS light using our setup.

Next in Section III.E, we show that with TMS light the output noise of the system is qubit

state dependent and how we can use this to measure qubit. In Section III.F, we demonstrate

how to take advantage of the TMS light to implement a measurement with higher power SNR

than the usual coherent light measurement. In Section III.G, we use the weak measurement

technique to investigate the back-action of the measurement. Finally in Section III.H, we

give a brief conclusion of this chapter and some outlooks for this project.
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B. Experimental setup

1. Cryogenic setup

In this experiment, we form an active interferometer with two nominally identical JPCs,

the ‘entangler’ and ‘analyzer’, by connecting their signal and idler ports [98], as shown in

Fig. 15. Uncorrelated vacuum noise enters the interferometer via the inputs of the entangler

JPC, which transforms them into highly correlated, two-mode squeezed vacuum traveling

along the two arms of the interferometer that we will describe in details in the next section.

These two paths recombine and interfere with each other in the analyzer JPC, generating

outputs controlled by the gains and relative pump phase of the two JPCs. The input is doubly

amplified with zero relative pump phase between the two JPCs (yielding a net amplifier with

power gain GeGa), while a π relative pump phase will cause the analyzer JPC to de-amplify

the output of the entangler JPC. In the absence of loss and added noise, the output of the

interferometer will return to uncorrelated vacuum if the gains of the two JPCs are matched

and their pump phases are different by π.

We use the interferometer to read out a qubit by interrupting the upper arm with a

microwave cavity, which in turn is dispersively coupled to a transmon qubit, as shown in

Fig. 15. To achieve a better SNR than qubit readout with coherent light input and phase-

preserving amplification (CS + PP), the dispersive phase shift due to interaction with the

qubit-cavity system must be either close to zero or π, which correspond to the qubit-cavity

dispersive shift χ being much smaller or larger than the cavity linewidth κ [99]. In our

experiment, we design the quit-cavity system to be in the small dispersive shift regime with

χ/κ = 0.22 which is favorable for fast readout.

Although the noise of the interferometer itself can read out the qubit for many com-

binations of entangler and analyzer gain and relative phase, high SNR readout requires a

coherent drive to be applied to the system. The original proposal called for displacing the

input to the upper arm of the entangler [99]; however, in this scenario the signal is both

amplified and partially transmitted down both arms of the interferometer, so that there is

interference in both the output signal and noise. See how the signal changes in Fig. 19.
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Figure 15: Schematic of the experiment setup. Two nominally identical JPCs, entan-

gler and analyzer, are connected by their signal (Sig) and idler (Idl) ports respectively with

circulators and superconducting cables to form an interferometer. The unused ports on the

circulators are terminated in cold 50 Ω loads which provide quantum vacuum noise to the

entangler, and a dump for the unused signal on the lower arm of the interferometer. The

upper arm of the interferometer is interrupted by a 3D transmon qubit-cavity system. The

qubit measurement pulse is sent into the cavity via its weakly coupled port without going

through both arms of the interferometer which enables the switching between the two-mode

squeezed light readout and coherent light readout in situ by turning on and off the pump of

the entangler JPC. The signal is subsequently further amplified by a cryogenic HEMT and

demodulated and recorded at room temperature.

This greatly complicates fair comparison with CS + PP readout, and so in our experiment

we drive our readout through a second, weakly coupled port in the microwave cavity. The

readout signal thus does not interfere, and experiences the same gain (from the analyzer

only) in both our TMS and CS + PP readout. In this case, we squeeze only on the noise,

with a degradation/enhancement of SNR corresponding to a larger/smaller output noise,
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respectively.

In addition to the set up shown in the Fig. 15 that is cooled down to 20 mK, we also

show the rest of experimental setup in Fig 16. Fridge input lines carrying signals from

room temperature to the system are attenuated and filtered with homemade lossy Eccosorb

filters. Room temperature electronics, which include microwave generators, IQ mixers and

an arbitrary waveform generator, are used to produce microwave pulses to drive the qubit

and cavity. Both the qubit and cavity drives are sent into the system through the qubit-

cavity input line, which connects to the weak port of the cavity. The JPCs are pumped

with Keysight microwave generator. The output signal from the TMS interferometer is

amplified by a chain of low noise cryogenic and room temperature amplifiers before been

down-converted, digitized and demodulated with a room-temperature reference copy.

2. Pump leakage cancellation

Another practical issue we have encountered during the experiment is the leakage of

pump signal. Due to the design of our JPC, applied pump tones preferentially leave from

the signal and idler ports. Similarly, a pump tone can enter a JPC through its signal and

idler ports (though in practice we apply pump tones only to the pump port). Thus, in our

experiment, a fraction of the pump signal from the first JPC (entangler) always leaks into

the second JPC (analyzer) through the arms of the interferometer. The reverse process is

also possible, depending on the directionality of our interferometer at the pump frequency.

Given that the two JPCs are biased so that their mode frequencies are matched and the

second JPC is operated in the high gain (20 dB) regime, this pump leakage can cause large

gain variation on the second JPC (gain variation as large as 15 dB was observed).

To eliminate this unwanted effect, we deliver the pump signals to the JPCs through a

circuit shown in Fig. 17 similar to the one used in Ref. [98]. In this circuit, the entangler pump

is split and fed to two I/Q mixers which provide both JPC pumps. The analyzer’s pump

signal is a combination of a the desired analyzer pump and a phase and amplitude shifted

copy of the entangler pump which cancels its leakage in the analyzer JPC. Experimentally,

we nulled the leakage by varying the analyzer pump phase and identifying the correction
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Figure 16: Wiring diagram of the cryogenic microwave measurement setup.

49



Generator

Keysight N583B

Splitter

Entangler 

JPC

Analyzer 

JPC

I(Q) control from 

AWG 5014C

Marki IQ0618

LO LO

(𝐼𝑝𝐸 , 𝑄𝑝𝐸)
𝐼𝑝𝐴 , 𝑄𝑝𝐴 +

(𝐼𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 , 𝑄𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡)

Figure 17: Wiring diagram of room temperature setup for canceling the pump

leakage. The output of a single generator (Keysight N583B) is split and fed to two I/Q

mixers which control the two JPC pumps. The Signal applied to the analyzer JPC is the

sum of the desired pump and a correction designed to cancel leakage due to the entangler

JPC pump. The use of a single generator has the additional benefit of stabilizing the relative

phase of the two pumps, as a drift in phase of the generator affects both pumps equally.

factor where analyzer gain is insensitive to the presence or absence of the entangler pump.

Another way of eliminating the pump leakage to the analyzer could be to add low-pass

filters on both arms of the interferometer. However, this would introduce additional loss

to the interferometer and degrade its performance. Therefore, we chose the active method

described here. More, to prove that this effect is due entirely to pump leakage, and not

two-mode squeezing effects in the interferometer, we verified the presence of pump leakage

and our cancellation scheme with the up-stream, entangler JPC tuned far away in frequency
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Figure 18: Normalized signal strength of qubit readout with coherent light and

displaced two-mode squeezed vacuum. The strength of the signals are normalized by

the average signal strength of the coherent light readout (CS + PP). Data shown here are

for entangler gain Ge = 1.0 dB (blue dot), 1.5 dB (red cross) and 0 dB (CS + PP) (black

star). The analyzer gain is kept constant at Ga = 20 dB.

To quantify how well the cancellation process works, we measured the output signal

strength as a function of the relative pump phase for coherent light readout (CS+PP),

which should have no pump variation, and displaced two-mode squeezed vacuum readout

with the same cavity drive strength. Fig. 18 shows the output signal strength normalized

with respect to the average output signal strength of coherent light readout. For displaced

two-mode squeezed vacuum readout, the output signal strength varies at most by −8%,

which corresponds to a variation of 0.35 dB of the 20 dB gain of the analyzer. Note that this

shift is negative, and decreases our SNR, so that the net observed enhancement in readout

SNR is entirely due to a reduction in output noise and even larger than the overall SNR

improvement suggests.
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C. Sample parameters

The cavity in our experiment is a 3D aluminum coaxial post cavity with a resonance

frequency of ωc/2π = 7.447 GHz, coupling quality factors of Qstrong = 752 on the strong

port, and Qweak ∼ 1, 000, 000 on the weak port. Therefore, the cavity linewidth seen from

the strong port is κ/2π = 9.9 MHz. The superconducting qubit is a 3D transmon qubit made

by commonly used Dolan bridge technique with ground to excited state transition frequency

of ωge/2π = 4.102 GHz, anharmonicity α = 180 MHz, and a qubit-cavity dispersive coupling

strength of χ/2π = 2.2 MHz . This qubit has a T1 of 18.2 µs, and T2R of 4.4 µs (T2E is

4.6 µs). The cavity is placed in an aluminum shield that is inside a µ-metal cryoperm shield.

The whole system is wrapped in mylar.

The cavity is used to perform dispersive measurement on the qubit. The strong port is

used to have the qubit-cavity system strongly couple to the interferometer, so that the noise

features seen the qubit are determined by the TMS noise. The weak port (whose coupling

Q is much higher and therefore much harder to send signal through) is used to send in the

control and measurement pulses to the system.

D. Interference of two-mode squeezed light with JPC

An important signature of the TMS light is the coherent interference between the two

parts of the light generated by the entangler. The effect of this interference can be both

seen in the change of gain and output noise level of the system as a function of the phase

difference between the pump signals of the entangler and analyzer. To understand this, we

can look at the relation between the input and output mode (a and b) of a phase-preserving

amplifier (e.g a JPC):

aout = S†ainS = cosh(r)ain + eiφpsinh(r)b†in (III.1)

b†out = S†b†inS = cosh(r)b†in + e−iφpsinh(r)ain (III.2)
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When two identical JPCs are connected with their signal and idler ports respectively, it is

straightforward to calculate the scattering parameters for the combined system using the

equations above twice. For example, the transmission gain from the signal port of the

‘entangler’ JPC to the signal port of the ‘analyzer’ JPC Saa can be written as:

Saa = cosh(rE)cosh(rA) + ei∆φsinh(rE)sinh(rA) (III.3)

where we can see the amplitude of Saa will vary with the relative pump phase ∆φ. Especially,

when two JPCs has a matched gain (rE = rA = r) and a relative pump phase difference

of π, the total gain of the system will become cosh2(r) − sinh2(r) = 1, indicating that the

output signal power will be the same as the input signal. This interference pattern feature

demonstrates this important signature of a phase preserving amplifier (e.g. JPC), that both

output modes are connected with both input modes, which is a requirement from quantum

mechanics. Therefore, light in the two modes of the TMS light are not independent of each

other, but tightly correlated and thus can interfere with each other.

Figure. 19 shows data measured using a vector network analyzer as a function of the

relative pump phase for Ge = 0.67 dB, 9.15 dB and a fixed analyzer JPC gain of Ga = 10 dB.

By fitting these data with a modified version of Eq. III.3 which includes losses on both

arms [98], we can extract the ratio of the transmission efficiencies of the upper and lower

arms, which is found to be 0.9. We believe this imbalance in transmission is mostly due to

the insertion loss of the extra circulator on the upper arm that connects to the qubit-cavity

system. Given the stated loss of 0.2 dB per pass in the circulator, this would give 0.4 dB

(transmission coefficient of 0.91) of additional loss on the upper arm, which is consistent

with the loss ratio inferred from our data.

The normalized output noise level σ2
out can be also calculated from Eq. III.3, which

gives [98]:

σ2
out = cosh(2rE) + sinh(2rE)tanh(2rA)cos(∆φ) (III.4)

We measure the output noise voltage at the signal port of the analyzer while sweeping

the relative phase (∆φ) between the two pump tones for different squeezing strength, Ge,

on the entangler JPC. The gain of the analyzer JPC, Ga, is kept constant at 20 dB. Unlike

measuring the S-parameters value using a vector network analyzer, the noise is measured
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Figure 19: Transmission measurement of the S parameter Saa of the TMS interfer-

ometer as a function of the relative pump phase. The gain of the analyzer JPC, Ga, is

fixed to be 10 dB during the measurement (to avoid gain saturation for large entangler gain

settings) as shown by the black dashed line. The blue triangle and red star trace corresponds

to the different gain of the entangler JPC.

using an arbitrary waveform generator and a digitizer. For each shot of the measurement,

the qubit is prepared in the ground state by post-selecting the result of an initial, projec-

tive measurement. After initializing the qubit state, we wait for 10 cavity lifetimes before

recording the output voltage of the system for a 660 ns period, from which we obtain the

quadrature voltage values (Im, Qm) of the noise. For a given squeezing strength, at each

relative pump phase, the same measurement is repeated 50,000 times and the outcomes are

plotted in the form of a 2D histogram. Fig. 20(a) shows the line cuts along Qm = 0 of the

2D histograms of the measurement outcomes with the entangler off, Ge = 0 dB (CS + PP),

versus entangler on with Ge = 1.5 dB at two different relative pump phases. All the curves

are normalized so that the area under the curve is 1. Comparing to the unsqueezed input

(CS + PP), the output noise voltage of the two-mode squeezed vacuum changes from larger
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Figure 20: Two-mode squeezed vacuum. (a) Normalized 1D Gaussian distribution of

noise measurement result for the two-mode squeezed vacuum at featured relative pump phase

point with a Ge = 1.5 dB. The red cross and blue dot curves are obtained by applying a

line cut along Qm = 0 of the 2D histograms at relative pump phase point that gives the

highest and lowest noise level respectively. The curve for the case of coherent light (yellow

star) is also shown for comparison. (b) Normalized standard deviation of output noise

voltage of two-mode squeezed vacuum as a function of relative pump phase ∆φ at different

entangler gain Ge. The standard deviation of noise voltage at each relative pump phase and

entangler gain is obtained by fitting a histograms of 50, 000 repeated measurement results

(see supplementary) to a 2D Gaussian distribution. The black star line shows the noise level

of the coherent vacuum input as a reference while the other colors each represents a different

gain for the entangler JPC. During the measurement, the analyzer gain is Ga = 20 dB.

to smaller than that of the amplified vacuum as the two pumps go from in phase to out phase

with each other, which demonstrates the correlation between the two parts of the two-mode

squeezed vacuum traveling on the two arms of the interferometer.

By fitting the histogram to a 2D Gaussian distribution, the standard deviation of the

measurement outcome (σI , σQ) can be extracted. In Fig. 20(b), we plot the standard devia-
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tions of the noise measurement outcomes with respect to relative pump phase for entangler

gain ranging from 0 dB to 4 dB (as σI ' σQ we plot their average). For easier compari-

son, all the data shown in this figure are normalized by the average standard deviation of

the measurement outcome of Ge = 0 dB, which is the noise for standard CS + PP qubit

measurement. We can see that the output noise level of the two-mode squeezed vacuum

oscillates with the relative pump phase. In particular, there exists a range of relative pump

phase within which it goes below that of the amplified unsqueezed vacuum. This oscillatory

pattern clearly shows the existence of coherent interference between photons in the two arms

of the interferometer. It also shows that the output noise level of the two-mode squeezed vac-

uum can be controlled by the relative pump phase. As the gain of the entangler increases,

the suppression of the noise becomes stronger, but at the same time the phase range for

noise suppression becomes smaller. This sets the limit for SNR improvement attainable in

a given qubit-cavity system. We note that similar result has previously been observed in a

setup with only two JPCs and no qubit [98]. This noise reduction is due to the destructive

interference between the light in both arms of the interferometer and it points the way to

use TMS light for a better qubit measurement.

E. Qubit readout with two-mode squeezed vaccum

In order to utilize the two-mode squeezed vacuum for qubit readout, we first study the

effect of the dispersive qubit-cavity phase shift on the interferometer. To do so, we repeat

the measurements from Fig. 2 with Ge = 2.0 dB and the qubit now being prepared either in

the ground or excited state, and the results are shown in Fig. 21(a). The noise behavior of

two-mode squeezed vacuum for qubit in ground and excited states are very similar, with a

relative phase shift of 40° which is due to the qubit-state dependent dispersive phase shift on

photons traveling on the upper arm of the interferometer. For a given relative pump phase,

this extra phase shift creates a qubit-state dependent output noise power. This means that,

except for the two relative phases (∆φ = 190° and 330°) where the output noise is identical

for both qubit states , the noise of the interferometer can measure/dephase the qubit state
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without any input drive applied to the cavity. This is very different from CS + PP readout

where the cavity must be driven to perform measurement, and the amplifier being on or off

should not affect the qubit’s dephasing rate.
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Figure 21: Qubit readout with two-mode squeezed vacuum. (a) Normalized standard

deviation of output noise voltage for two-mode squeezed vacuum input on the analyzer as a

function of relative pump phase and qubit state. The black dotted line shows the standard

deviation when the input of the analyzer is the coherent (unsqueezed) vacuum. Blue and

red curves represent results for two-mode squeezed vacuum noise recorded when the qubit

is in |g〉 and |e〉 state respectively. (b) Conditional tomography data for the z component

of the qubit Bloch vector after we record the output noise for 660 ns at different relative

pump phases. The qubit is prepared in the state of (|g〉 + i |e〉)/
√

2. The entangler gain is

Ge = 2.0 dB and the analyzer gain is Ga = 20 dB.

To demonstrate this ‘two-mode squeezed vacuum’ readout in the interferometer, we mod-

ify our measurement protocol by changing the initial state of the qubit to (|g〉 + i |e〉)/
√

2,

and adding a strong measurement after recording the noise output voltage to determine the

final state of the qubit. The pulse sequence is shown in Fig. 22. As in References [54, 108],

we construct a histogram where each pixel contains the average of all final measurement

results of the z-component of the qubit state Bloch vector conditioned on receiving a partic-

ular (Im,Qm) voltage in the second (noise) measurement. Fig. 21(b) shows these conditional
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z-axis tomography results at four different relative pump phases: ∆φ = 120° and 250°, at

which the difference between the output noise power for qubit in ground and excited state

is the largest, and ∆φ = 190° and 330° at which the output noise power for qubit in ground

and excited state are the same. At ∆φ = 120°, we clearly see a ‘Bullseye’ pattern, with

the qubit found to be in |e〉 if the recorded noise voltage is large, and in |g〉 if the recorded

noise voltage is small. A similar result is also seen at ∆φ = 250°, with the correspondence

between the noise voltage amplitude and qubit state reversed. These results show that two-

mode squeezed vacuum in our inteferometer, unlike unsqueezed vacuum, can entangle with

the qubit state. An observer with a power meter could perform a (poor fidelity) readout

of the qubit simply by measuring how much noise the circuit emits. This also implies that

powering the entangler and analyzer will generate continuous qubit dephasing for these bias

points. In contrast, at ∆φ = 190° and 330° where the output noise levels are the same for

different qubit states, and so, similarly to unsqueezed vacuum, no information about the

qubit can be inferred from the circuit’s noise output. We will focus in the next two sections

of this paper on experiments at the two ‘matched’ noise points, which we refer to as ‘TMS

High’ and ‘TMS Low’ for the point with larger and smaller matched noise, respectively.

F. SNR improvement with displaced two-mode squeezed vacuum

In standard dispersive qubit readout, a coherent microwave pulse containing several

photons is used to extract the qubit state information [54, 109]. We are now going to show

that SNR of such measurements can be improved by replacing the coherent light with two-

mode squeezed light of the same strength. The SNR in our experiment is defined as:

SNR =
(Igc − Iec )2 + (Qg

c −Qe
c)

2

σ2
g + σ2

e

(III.5)

where (I
g(e)
c , Q

g(e)
c ) is the center of the measurement result distribution when the qubit is in

ground (excited) state and σg(e) is the corresponding standard deviation. To determine the

SNR, we prepare the qubit in the ground and excited state separately, and then perform the

readout by sending a coherent probe signal through the cavity from its weak port. Given
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Figure 22: Pulse sequence for quantifying the back action of noise measurement.

This pulse sequence consists three stages of qubit and cavity manipulation. The first stage

is state preparation, during which the qubit is first projected to the state |g〉 by a strong

measurement (blue box) and post-selection, and then rotated to the state (|g〉+ i |e〉)/
√

2 by

a Rx(π/2) pulse (red Gaussian). The second stage is noise measurement, during which the

qubit state is measured by only recording the output noise of the system. In the third and

final stage a qubit z-component tomography is performed by a strong measurement (blue

box) pulse.

that the coupling strength of the strong port is much greater than that of the weak port

(Qweak � Qstrong), quantum fluctuations of the field inside the cavity will be set by the

two-mode squeezed vacuum present at the strong port. For fair comparison with standard

CS + PP readout, we drive the system from the weak port in all cases, rather than driving

the entangler amplifier as proposed in [99]. This has the advantage that there is ideally no

interference in the amplitude of our signals, and a uniform displacement of the cavity in

all measurements (see Fig. 18), and so any change in SNR will be solely due to changing

the quantum noise in the interferometer, rather than larger or smaller displacements drives
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applied to the cavity.

In Fig. 23, we show the SNR of the dispersive readout with displaced two-mode squeezed

vacuum as a function of relative pump phase for different entangler gain. The data is

normalized to the average SNR of coherent light (Ge = 0 dB) readout with the same strength.

Improvement in SNR, as large as 44%, is observed for relative pump phase in the range of

140° to 240° over a wide range of entangler gain. In this range, the signal is actually 8%

smaller than in CS+PP case (see Fig. 18), and so the entirety of the improvement in SNR

is due to suppressed noise in the interferometer’s output. Such an improvement in SNR

would translate into a suppression of readout error rate that is due to the finite SNR by a

factor of 5 when starting out with an error rate of 1% with coherent light, which is normally

achievable in superconducting qubit systems.
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Figure 23: SNR of qubit readout with coherent light and displaced two-mode

squeezed vacuum. Normalized power SNR for qubit readout with coherent light, and

with displaced two-mode squeezed vacuum at different squeezing strength (Ge) as a function

of relative pump phase. The SNR is calculated according to Eq. III.5 where the parameters

are extracted from a 2D Gaussian fitting of the corresponding data.

Outside this range of phases, readout with displaced two-mode squeezed vacuum has

a lower SNR than with coherent light due to one or both of the two qubit states having
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a substantially higher noise than CS+PP readout. We also note that the improvement in

SNR does not increase monotonically with squeezing strength (rE, see Sec. II.E); it reaches

maximum for entangler gain between 1.5 dB and 2.5 dB, then decreases at higher entangler

gain. There are two major reasons for this behavior of the SNR. First, photon loss inside the

two-mode squeezed light interferometer limits the maximum amount of entanglement/noise

reduction which can be achieved. Second, as we turn up the gain of the entangler JPC, it

is more likely to saturate the analyzer JPC and cause its gain to drop and its amplification

process to be less ideal, which reduces SNR. This effect is responsible for the drop of SNR

for entangler gain of 4 dB shown in Fig. 23. [110,111].

G. Backaction of two-mode squeezed light measurement

Another important figure-of-merit of a quantum measurement is its efficiency, which

determines the fraction of information of the system being measured which is obtained by

the observer, rather than lost to all other potential observers [54, 90, 112, 113]. Readout

fidelity scales exponentially with measurement efficiency (See Eq. I.1), and thus it plays a

vital role in experiments which requires fast and high fidelity measurements, such as feedback

control in quantum error correction [114].

As we discussed in Chapter 2 (need an introduction about the science protocol...), in our

experiment, the quantum efficiency η of our qubit measurement is determined by analyzing

its back-action on the qubit with a weak measurement protocol Ref. [54]. This protocol

provides a self-calibrated way of determining the overall efficiency of a measurement system.

A typical result for the coherent state measurement and the corresponding tomography data

is shown in Fig. 24(a). The conditional x and y components of the qubit state Bloch vector

for measurement results that have zero in-phase component (I = 0) of coherent light readout

is shown in Fig. 25(a). The theory for coherent weak measurement back-action suggests that

the amplitude and frequency of the x and y-component oscillation, are determined by both

the measurement strength and the efficiency of the measurement system. Therefore, by

fitting this set of data to Eq.(science protocol equation), we can obtain the self-calibrated
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measurement strength and the overall efficiency of the measurement setup. From the data

of coherent light measurement, we obtain a overall efficiency of η = 0.46 which sets the base

line of our system. By accounting for the known loss in coherence due to T2 process, we can

also calculate a corrected efficiency of ηcor = 0.52.

However, as there is no well established theory for weak measurement back-action with

our TMS interferometer, we focus our study on two special cases where it most closely re-

sembles the coherent light measurement; the ‘TMS High’ and ‘TMS Low’ cases shown in

Fig. 21(a) where the output noise power is independent of the qubit state, and the interfer-

ometer’s output resembles CS + PP readout with unusual noise values. Figure. 24(b) and

(c) show the weak measurement result and corresponding tomography data and Fig. 25(b)

and (c) show the results of the conditional x and y components of the qubit state Bloch

vector at (I = 0) for ‘TMS High’ and ‘TMS Low’ case, respectively. We have adjusted the

drive amplitudes to match all three measurement types classical SNR (and correspondingly

their z-component back-action, see Fig. 26). However, the data clearly show that both the

oscillation frequency and amplitude of the x- and y- components are very different from the

CS + PP case, which indicates that the back-action strength and measurement efficiency

are very different. From the same fitting, we obtain an efficiency of 0.58 at the displaced

two-mode squeezed vacuum readout at the ‘TMS High’ point, and 0.29 at the ‘TMS Low’

point.

One cause for this effect which we must rule out is that different TMS settings produce

larger and smaller noise compared to the fixed contribution of the output chain following

the analyzer JPC. That is we need to confirm that the observed large changes in quantum

efficiency of the three readout methods can not be explained by changes in the ratio of

output noise of the TMS interferometer and the classical noise from the output chain.

The overall measurement efficiency of the system extracted from the weak measurement

protocol can be expressed as:

η = ηAmp ηout, (III.6)

where ηAmp is the efficiency of the system before HEMT (qubit-cavity and JPC/TMS in-

terferometer), ηout is the efficiency of the output chain after the analyzer JPC which is

dominated by the efficiency of the HEMT amplifier. The efficiency of the output chain, ηout,
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Figure 24: Experiment data for back action of weak measurement. Results are

shown for the back action of the weak measurement for coherent light (a) and displaced

two-mode squeezed vacuum at high(b) and low(c) noise level match point. In all three cases,

the strength of the weak measurement is Īm/σ = 0.66. The leftmost column shows the 2D

histograms of scaled measurement outcomes recorded during the weak measurements. The

right three columns are the conditional tomography data for 〈x〉, 〈y〉 and 〈z〉 component ver-

sus the associated (Im/σ,Qm/σ) bin. The value in each bin is the average of all tomography

data associated with that (Im, Qm) value.

can be expressed as:

ηout =
NAmp

NAmp +Nout

. (III.7)

63



𝑄𝑚/𝜎

𝑥
𝑐
,
𝑦

𝑐
CS + PP TMS high TMS Low

(a) (b) (c)

0

1

-4-8
0

20000

40000
c
o

u
n

ts

𝜂 = 0.46 𝜂 = 0.58 𝜂 = 0.29

-1
0 -4-8 0 -4-8 0

Figure 25: Quantum efficiency obtained by analyzing the back-action of weak

measurements. Tomography data for x and y (blue stars and red dots) components of

the qubit Bloch vector after we apply a weak measurement (see supplementary for details)

are plotted against the left axis. The counts observed for each x and y tomography data

points are shown with black down pointing triangle and green up pointing triangle, plotted

against the right axis. The data is recorded for coherent light as well as displaced two-mode

squeezed vacuum at relative pump phase point such that the ground and excited state qubit

has the same noise level. Data is then fitted to the theory model for coherent light [54]. The

measurement strength is adjusted such that all the measurements have the same SNR. The

efficiency value obtained for each point is shown as well. The η is the quantum efficiency

extracted from the fitting model . A surprisingly low quantum efficiency is observed when

the system has less output noise level.

where NAmp is the output noise power of the analyzer JPC, Nout is the added noise power

of the output chain referred back to the input of the HEMT. An easily measurable quantity

in the lab that is closely related to ηout is the noise-visibility-ratio (NVR),

NV R =
NAmp +Nout

Nout

. (III.8)

It is easy to see:

ηout = 1− 1

NV R
. (III.9)
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Figure 26: Experiment data for z-axis back action of weak measurement. Tomog-

raphy data for z-component of the qubit Bloch vector along Qm = −4 of the 2D histograms

shown in Fig. 24. Different color indicates the case for CS + PP, TMS high match and TMS

low match, respectively.

In our experiment, the NVR is typically 7 dB when the analyzer JPC is operated at 20 dB

gain. Therefore, for coherent light readout, given η = 0.46 extracted from the weak mea-

surement, we have ηAmp = 0.58 for our system.

Now consider the case of the displaced two-mode squeezed vacuum (TMS). Even though

we did not measure the its NVR directly, we can calculate it based on the NVR of coherent

light and the noise suppression/enhancement shown in Fig. 21. The NVR for TMS at the

high (H) and low (L) match points can be expressed as

NV R
H/L
TMS = 1 +

N
H/L
TMS

Nout

= 1 +
NCS

Nout

(
σ
H/L
TMS

σCS
)2, (III.10)

which is larger (smaller) at the high (low) match point than that of coherent light. Conse-

quently, the efficiency of the output chain (ηout) will also be larger (smaller) than that of the

coherent light readout.
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Figure 27: Calculated overall efficiency of our measurement system for dis-

placed two-mode squeezed vacuum as a function of NVR for different analyzer

JPC/TMS interferometer efficiency. Overall efficiency of the system vs NVR at the

‘TMS Low’ and ‘TMS High’ matched points for different amplifier efficiency ηAmp = 0.35

(blue dash line), 0.45 (green dotted line) and 0.55 (red line). The black dash lines show the

value of efficiency obtained from the weak measurement protocol.

If we assume the quantum efficiency of TMS interferometer is the same as that in the

coherent light case, namely, ηAmp = 0.58, and a typical coherent light NVR, 7 dB, then

given the
σHTMSL

σCS
= 1.21 and

σLTMSL

σCS
= 0.86, we can calculate the overall quantum efficiency

of the system at the high and low σ match point. We get ηH = 0.48 < ηHexp = 0.58 and

ηL = 0.42 > ηLexp = 0.29.

More generally, in Fig. 27 we plot the overall efficiency as a function of NVR for different

values of ηAmp. This shows that even if we vary the relative noise contributed by the analyzer

and the output chain, the known changes in output noise cannot explain simultaneously ex-

plain both the TMS High and Low results. Instead, it appears that the TMS readout behaves

somewhat analogously to readout with a phase-sensitive amplifier, enhancing measurement
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SNR/z back-action at the TMS Low match point at the cost of rendering the x- and y-back

action more sensitive to degradation by losses or added noise (and thus lowering the appar-

ent efficiency in our imperfect apparatus). Interestingly, the TMS High match point, which

represents a substantially worse SNR also allows the qubit’s phase back-action to be more

faithfully reported to an observer, even in the presence of loss and inefficiency.

H. Conclusion

In this chapter, we have demonstrated a new scheme for interferometric readout of a

superconducting qubit with displaced two-mode squeezed vacuum and phase preservation

amplification. In this readout scheme, we can increase the SNR of projective readout by

suppressing the noise output of our amplifier below the usual Cave’s limit for an amplifier

fed with unsqueezed vacuum. In our experiment, we have achieved a 44% improvement

in power SNR compared to conventional coherent light plus phase-preserving amplification

readout. This improvement in SNR will result in a suppression of readout infidelity by a

factor of 5, if one starts with a 1% error rate in coherent light readout, with even greater

improvements at higher base fidelities.

A still more interesting result emerges as we investigate the quantum readout efficiency

of our TMS interferometer using weak measurements at points where the noise output is the

same for both qubit states. These data show that there are important effects on the ratio

between z back-action and the concomitant qubit phase back-action of this measurement

process relative to other known readout schemes. It appears that the increase in SNR at the

‘TMS Low’ match point comes at the cost of reducing the trackability of phase back-action.

Conversely, at the ‘TMS High’ match point this phase trackability is enhanced. Although

we rule out post-interferometer noise as the source of this effect, more theoretical work is

needed to understand the role of inefficiencies inside the interferometer due to imperfect

squeezing/amplification and losses in the interferometer arms. Finally, while tracking a sin-

gle qubit’s phase during measurement is not of direct value for single qubit measurements

in quantum computing, measurement-based entanglement is a vital component of many
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error-correction schemes in quantum information, and in these schemes [108,115,116], main-

taining/tracking two qubit phase coherence during a high-fidelity measurement is vital. Our

current experiment can be readily extended to two-qubit entanglement [115] by adding a

second qubit on the lower arm, and we expect the ability to rebalance measurement strength

and phase trackability in-situ to give crucial tolerance for losses and inefficiencies which

currently limit these experiments.

Therefore, this limitation notwithstanding, the fact that the ‘TMS High’ match point

gives this desirable quantum properties at a point which deliberately degrades SNR and

fidelity of projective measurement should encourage exploration of measurement methods

which are not just the quantum analogs of good classical measurement schemes.
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IV. Qubit-bath engineering via parameteric drives: Theory

A. Overview

Loss is ubiquitous in open quantum systems. In general, such dissipation to the environ-

ment is undesired as it leads to decoherence of the quantum state of the system. However,

by carefully engineering the coupling between the system and the dissipative bath (so called

‘bath engineering’), we can also create forms of dissipation which perform a useful task.

Examples in superconducting circuits include the use of bath engineering for qubit state

preparation/reset [59–61] and generation of multi-qubit entangled states [62, 63]. Some of

these protocols rely on the dispersive coupling between the qubit and cavity to create the

necessary frequency shift of the qubit drive and use the frequency selectivity of the drives

to select the desired processes. This method requires us to populate the cavity to generate

the frequency shift, which can cause extra difficulties when reading out the qubit. Another

method used in [61] is similar to what we are trying to do in this project, where they used

a dc SQUID as a tunable coupler shared between a transmon qubit and a resonator. The

coupling strength is controlled by the external flux threading the SQUID. The parametric

control is realized by modulating this external flux. This method will require a fast dc con-

trol line, and the ‘heating’ and ‘cooling’ processes (the meaning of ‘heating’ and ‘cooling’

will be clear in the discussion of this chapter) cannot be addressed separately. The use of a

dc SQUID will also introduce a large undesired fourth order terms to the system.

In our work, we realize bath engineer a transmon qubit through a 3-wave parametric

coupling (similar to the example in Sec. II.C) in the system. We will focus on the theory of

such a system in the Chapter and its experimental implementation in the Ch. VI.

We have realized three-wave bath-engineering circuits in two ways, first using the JRM

and then, more recently, using SNAIL-based resonators. In both shunted JRM and SNAIL-

based circuits at optimal bias points, they provide a large third order term while suppressing

the fourth order terms, which will create a frequency shift similar to that in the dispersive

measurement. This effect from the fourth order terms is undesirable as it will move the
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mode frequencies around when we try to drive the system. However, as discussed in detail

below, the three modes of the JRM and their spatial connections make JRM-based circuits

less flexible, and this work has moved entirely to SNAIL-based resonators.

This chapter is organized as follows: We begin in Sec. IV.B by introducing the original

theory proposal of the project from Hafezi et al. [70] in which the authors propose to create

a photonic system with chemical potential created by parametrically driven, third-order

processes. In Sec. IV.C, we discuss our first design, which is a direct implementation of

Hafezi’s proposal using a qubit and a JPC with one of its’ modes having a very low frequency.

We also discuss the practical limitations of this design. Next in Sec. IV.D, we talk about

an alternative design we used in the experiment which consists of a qubit and lossy SNAIL

resonator parametricaly coupled with each other. Finally, in Sec. IV.E we give a brief

conclusion.

B. A parametrically generated chemical potential for light

In this original theory proposal [70], the authors design a parametric scheme to address

the issue of chemical potential and thermalization in photonic systems. Unlike fermions

(such as electrons), photons lack a natural chemical potential which preserves their number.

This is a challenge for the use of photonic modes in quantum simulators and other potential

applications [68, 117] , as these systems will tend to decay to the vacuum state. Thus, we

seek to create an effective chemical potential by parametrically coupling a photonic system

(a microwave mode in our case) to a thermal bath (a lossy microwave resonator mode) at

finite temperature. More, chemical potential will be set by the frequency of the parametric

drive, and thus is in situ tunable over a range of values.

To understand the picture of thermalization via parametric coupling, we consider a sys-

tem with Hamiltonian HS coupled to a thermal ‘bath’ HB (consisting of a collection of spins

or a low-Q mode) via a term λHSB. The thermal bath will start in a initial state ρB = e−βHB ,

where β is the inverse temperature β = 1/kBT (kB is the Boltzmann constant and T is the

temperature). For a usual, non-parametric coupling, the coupling strength λ is a constant
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Figure 28: Schematics of the system parametrically couple to a thermal bath.

Thermal bath with mode b can be parametrically coupled to a higher frequency system with

mode a. Figure is adapted from Hafezi et al. [70].

which is determined by the distribution of the electromagnetic fields set by the physical ge-

ometry of the system and bath. One modification of this proposal is to replace this constant

coupling strength with a parametric one as shown in Fig. 28, that is, λ→ 2λcos(ωpt), where

ωp is the frequency of the parametric drive. Now the Hamiltonian of full system-bath is

given by:

H = HS +HB + 2λcos(ωpt)HSB (IV.1)

Here we assume the system-bath coupling HSB takes the bi-linear form, which is commonly

available in superconducting circuits:

HSB = Σj(a+ a†)Bj (IV.2)

where Bjs are the bath operators, and a† (a) is the creation (annihilation) operator for the

primary system mode we wish to control. In general, Hs can be any system Hamiltonian, but

here for our purpose, we will take Hs to be an anharmonic oscillator: Hs = ωaa
†a−αa†aa†a.
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Then we move to a rotating frame with the rotating operator: R = exp(−iωpta†a). The

Hamiltonian transformation is given by:

H̃ = R†HR− iR†Ṙ

= Hs − ωpa†a+HB + 2λcos(ωpt)R
†HSBR

(IV.3)

where Hs and HB remains unchanged as [Hs, R] = [HB, R] = 0 and iR†Ṙ = −ωpa†a. The

system-bath coupling term now becomes:

H̃SB = λΣjR
†[(e−iωpt + eiωpt)(a+ a†)Bj]R

= λΣj(a+ a† + ae−2iωpt + a†e2iωpt)Bj

' λΣj(a+ a†)Bj

(IV.4)

The key approximation we use from line 2 to line 3 in Eq. IV.4 is the rotating wave approx-

imation. We neglect the fast oscillating terms like ae−2iωpt to reach the simplified form of

H̃SB. Putting all the terms together, we get the new Hamiltonian in the rotating frame:

H̃ = Hs − µN + λH̃SB +HB (IV.5)

where µ = ωp and N = a†a is the number operator for the system. Then given a weak

coupling λ and the bath state HB = exp(−βHB), we will get an equilibrium thermal state

for system in the long time limit:

ρ ' exp[−β(Hs − µN)] (IV.6)

This is the distribution of the grand canonical ensemble and we can thus identify the chemical

potential for the system to be µ = ωp. As ωp is the frequency of the parametric drive manually

applied to the system, this result indicates we have created a photonic system with a tunable

chemical potential.

The key point in this proposal is to have a low temperature, low frequency bath para-

metrically coupled to a high frequency mode. Because of the low frequency of the bath, the

drive frequency ωp1 = ωa + ωb for ‘up going’ process that populates the qubit photon and

the frequency ωp2 = ωb − ωb for ‘down going’ process that empties the qubit photon are

close to each other. So, one parametric pump can drive both processes and by controlling
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the drive detuning one can change the relative rate of two processes, thus creating a tunable

chemical potential. However, as we will see in the later part of this chapter, we can also

apply the drives separately by having a high Q qubit couple to a lossy SNAIL mode. This

method turns out to be actually more flexible and give a variety of new controls compare to

the original proposal.

C. Bath engineering via a JPC with one low-frequency mode

?

𝜔𝑏 𝜔𝑎 𝜔

?

?JRM

Low frequency 

Low 

temperature 

Bath

System

3-wave coupling

Port a

Port b

Pump port

(a) (b)

Figure 29: Low frequency JPC implementation for bath engineering. (a) The idler

mode of the JPC is designed to have low frequency (∼ 300 MHz) that serves as the low

frequency, low temperature bath. The signal mode is a high frequency (∼ 7.5 GHz) mode.

It couples to a transmon qubit to create the necessary anharmonicity, then this new non-

linear mode will be the system mode. There is a common mode that is not shown in the

figure. The JRM provides the 3-wave mixing term which generates the parametric coupling

between the system and bath. (b) Schematic of such implementation. The design is similar

to a conventional JPC, only with one of the mode (mode a) being the low frequency one.

The low frequency mode is realized by increasing the length of the transmission line (the

length is not to scale in the schematic).

We first introduce a direct implementation for the original proposal. As shown in Fig. 29,

we consider a JPC with a low frequency (∼ 300 MHz) idler mode and a high frequency

(∼ 7.5 GHz) signal mode. The signal mode is used as the system mode and its frequency
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is chosen as a convenient ‘typical’ frequency for qubits and cavities. The idler mode is

used as the low temperature bath. Its low frequency mode sets the temperature of the

‘bath’. Since h̄ωi � kBT , this resonator has non-zero photon occupancy and as chemical

potential transfers photon number, not energy, so the lower frequency mode is higher effective

occupancy and thus at a higher temperature. However, if we realize this mode using a

transmission line resonator (see Fig. 29(b)), as in a conventional JPC (like in Sec. II.D) it

will give rise to other practical issues that could limit the performance of the device. We

will give more detailed discussion about this in the end of this section.

The signal mode then needs to couple to a transmon qubit to introduce anharmonicity

to the mode, making it a weakly anharmonic qubit. This effective qubit mode is then used

as the ‘system’. The common mode is not shown in the figure (we will discuss its issues in

this section and Sec. VI.B ), but as we discuss in the JPC chapter, the JRM creates a 3-wave

mixing term between these modes, leads to the interaction Hamiltonian:

Hint = g3ΦsΦiΦc (IV.7)

where g3 is the third order coupling strength and the Φis are the fluxes for each mode, where

s, i and c represent signal, idler, and common mode respectively. If we re-write it in terms

of the creation and annihilation operators, we will get:

Hint = g3(a+ a†)(b+ b†)(c+ c†) (IV.8)

To match the notation we used in the previous section, here we let a be the signal mode,

b be the idler mode and c be the common mode. Now if we apply the parametric drive on

the common mode at frequency ωp and keep it far detuned from the its own eigen frequency,

this drive can be considered as a ‘stiff’ pump, meaning we can replace the operator c by its

classical average 〈c〉e−iωpt:

Hint = g3〈c〉(e−iωpt + eiωpt)(a+ a†)(b+ b†) (IV.9)

and we find our reach the desired parametric coupling discussed in the previous section.

Now the next question is to introduce the anharmonicity to the signal mode. One

relevant design is the ‘Trimon’ device from R. Vijay’s group at TIFR [118,119]. A ‘Trimon’
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device is a three-qubit system that is based on the JRM. The JRM is shunted by connecting

superconducting pads to each node to create three coupled non-linear oscillator modes. Each

mode behaves as a transmon qubit with resonant frequency and anharmonicity set by the

shunted capacitance and junction parameters. This indeed produces our required non-linear

signal mode, but there is also a non-trivial cross-Kerr type inter-mode couplings due to

sharing of the for junctions amongst all three modes. The cross-Kerr couplings will shift the

mode frequencies as the system is driven by parametric pumps, creating extra difficulties to

implement the protocol. More, it is unclear whether we can create the required differences

in frequency among the modes.

Instead of the Trimon idea, we plan to directly bring another transmon into close reso-

nance with the signal mode to give it enough nonlinearity to behave like a qubit. In practice,

this ancillary qubit needs to have a strong enough coupling with the signal mode to provide

enough anharmonicity for the ‘hybridized signal mode’ used in the protocol. Also, in order

to perform the measurement, we would need another ancillary readout mode to probe the

state of this hybrid transmon-signal mode.

This low frequency JPC idea is not impossible to implement with superconducting cir-

cuits techniques, however there are some practical issues that need to be taken into account.

The low frequency mode will give rise to two problems. Firstly, the participation ratio,

defined as:

p =
Lj

Lj + Lext
(IV.10)

where Lj is the inductance from the junctions in each mode and Lext is the external linear

inductance in the corresponding mode. So we can see from this equation, the participation

ratio will be low for this mode, as large linear inductance is used to bring down the mode

frequency. This will lower the coupling strength between the modes and thus require a larger

pumping strength which may triggering other higher order effects before we implement the

desired process. For a detailed discussion about how the participation ratio is related with the

coupling strength between modes in a JPC (or SNAIL other Josephson-junction containing

mode), see Ref [120]. Secondly, a low frequency mode has many harmonics, some of which

can be near the signal frequency, leads to a frequency crowding problem. As shown in the

next chapter, we try to solve this problem by designing a bandgap filter to have a stop band
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near the signal mode. In addition to these problems, another challenge is to to maintain a

high Q for the hybrid transmon-signal mode so that photons can live long enough in this

mode for the thermalization process to finish. This is achievable in principle. However, as

we will talk about in the next chapter, it turns out to be one of the major challenges as we

try to bring this idea to realization.

D. Bath engineering via lossy SNAIL

1. System Hamiltonian

In this section, we will introduce another proposal for this project: to implement a

controllable bath for a transmon qubit by dispersively coupling it to a lossy SNAILmon as

we discussed in Sec. II.F. A schematic is shown in Fig. 30. The system includes a transmon

qubit and SNAIL with a dipole-dipole coupling between them. The Hamiltonian for such a

system can be writen as:

Hsys/h̄ = ωaa
†a− α/2a†aa†a+ ωbb

†b+ gbbb(b+ b†)3 + gab(a
†b+ ab†) (IV.11)

where a (a†) and b (b†) are the annihilation (creation) operators for the qubit and SNAIL

mode, respectively, ωa and ωb are the frequencies for qubit and SNAIL, α is the anharmonicity

of the qubit, gbbb is the third order coefficient of the SNAIL mode and gab is the coupling

strength between the qubit and SNAIL. To simplify this Hamiltonian, we can diagonalize

the linear part of the it and re-write the Hamiltonian in the new basis [121]:

ã = cos(
θ

2
)a+ sin(

θ

2
)b

b̃ = −sin(
θ

2
)a+ cos(

θ

2
)b

(IV.12)

where θ = arctan(2gab
∆

), and ∆ = ωb−ωa is the frequency difference between the SNAIL and

qubit. In this new basis, the new eigenfrequencies of each mode is given by:

ω̃a =
ωa + ωb −

√
4g2

ab + ∆2

2

ω̃b =
ωa + ωb +

√
4g2

ab + ∆2

2

(IV.13)
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Figure 30: Schematic of a transmon qubit dispersively coupled to a lossy SNAIL.

To implement a controllable bath for the transmon qubit, we have it coupled to a SNAIL.

The SNAIL is to introduce a third order term in the system and is placed in the proximity of

the qubit to produce a dipole-dipole coupling between them. The qubit is designed to have a

high coherence while the SNAIL mode is made to strongly coupled to the environment. The

bath engineering is realized by combining this dissipation and the parametric drives applied

to the SNAIL mode.

with these results, we can now re-write the system Hamiltonian in the new basis as:

H̃sys/h̄ = ω̃aã
†ã− α[(cos(

θ

2
)ã† − sin(

θ

2
)b̃†) (cos(

θ

2
)ã− sin(

θ

2
)b̃)]2

+ ω̃bb̃
†b̃+ gbbb(sin(

θ

2
)ã+ cos(

θ

2
)b̃+ h.c)3.

(IV.14)

Due to hybridization, the third- and fourth-order nonlinearities which were previously ex-

clusive to the SNAIL and qubit, respectively, are now distributed throughout the system,

resulting in self- and cross-nonlinearities of each order for both modes. To see this more

clearly, we can factor out the second term in the first line (originally the qubit Kerr term),

to find:

H̃sys/h̄ = ω̃aã
†ã+ gaaaaã

†ãã†ã+ ω̃bb̃
†b̃+ gbbbbb̃

†b̃b̃†b̃

+ gaabb(ã
†ãb̃†b̃) + gbbb(sin(

θ

2
)ã+ cos(

θ

2
)b̃+ h.c)3.

(IV.15)
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The last term is a three-wave mixing term comes from the third order term provided by the

SNAIL. Then, similarly to what we have done with the JPC, we can apply various pumps at

different properly chosen frequencies to drive the desired parametric processes. By combining

these processes with the dissipation of the SNAIL mode, we can independently control the

relaxation rates of the qubit and thus effectively create the ‘heating’ and ‘cooling’ process

for the transmon.

For simplicity, here we only keep the fourth order terms that can survive the rotating wave

approximation. The dipole-dipole coupling term is eliminated by the diagonalization, and

the sine and cosine factors for the fourth order terms have been absorbed into the coupling

strengths. Under the assumption that the modes are in the dispersive limit (∆ � gab), we

approximate cos( θ
2
) ' 1 and sin( θ

2
) ' θ/2 = gab

∆
, and so for each b index appearing in a

fourth-order coupling, the strength will fall by gab
∆

. Correspondingly, we will later make us

of a similar notation for third order couplings in which every a index reduces the coupling

strength by the same factor. Thus, the gaaaa term, which represents the anharmonicity

of the hybridized qubit modeis approximately unchanged, so that gaaaa ' −α. We also

note that there is a new anharmonicity been introduced to the SNAIL-like mode. However

as gbbbb = −α(gab
∆

)4 is relatively both relative small and this mode will not be populated

during the process due to the deliberately high loss rate of the SNAIL, so that we can safely

neglect the effect of this term. Taken together, the first five terms describe a system of a

qubit-like mode (an anharmonic oscillator) and a nearly-harmonic oscillator with a cross-

Kerr gaabb = −α(gab
∆

)2, which is a further undesired Kerr term that also comes from the

anharmonicity of the qubit and the mode hybridization. It will have two effects that lead

to unwanted frequency shifts when we apply parametric drives. One is the frequency shift

due to ‘real’ photons in the system, but as our protocol only requires a few photons in both

modes (|g〉 and |e〉 for qubit, and 0 ∼ 2 photons for SNAIL), this effect won’t create a larger

enough shift to change the behavior of the system. However, the off-resonance pump on

SNAIL mode will also interact with this cross-Kerr term to generate AC Stark shifts that

we will discuss below.

In addition to these unwanted Kerr terms, however, we have also created a series of

cross-third order terms, of amplitude gabb = gbbb(
gab
∆

) which will power the bath engineering
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processes we discuss below. A final note, for simplicity will omit the tilde symbol in our

further calculations, so all the operators in the following of this section are in the hybrid

basis unless otherwise stated.

2. Bath engineering with drive and dissipation of the system

As shown in Fig. 30, in order to implement a controllable bath, we need to combine the

effects of parametric drives and SNAIL dissipation. The drive is applied to the SNAIL mode,

and to model such a drive, we consider another term Hd for the system in addition to the

Hsys in Eq. IV.15:

Hd = εd(e
i(ωdt+φd)b† + e−i(ωdt+φd)b) (IV.16)

where εd is the magnitude of the drive, ωd is the frequency of the drive and φd is the phase of

the drive. Now the Hamiltonian that describes this driving system is given by H = Hsys+Hd.

To eliminate this extra drive term, we move to a new displacement frame with operator

D(β) = eβb
†−β∗b, where we carefully choose β = εde

−iφd
ωd−ωb

. Then by taking the displacement

transformation of the Hamiltonian, H ′ = D†HD − iD†∂tD, we get the Hamiltonian in this

frame:

H/h̄ = ωaa
†a− αa†aa†a+ ωbb

†b

+ gbbb(sin(
θ

2
)a+ cos(

θ

2
)(b+ βe−iωdt) + h.c)3

+ gaabba
†a(b+ βe−iωdt)(b† + βeiωdt).

(IV.17)

To further eliminate the time dependence in this Hamiltonian, we then transform again with

R = eiωata
†a+iωbtb

†b and H ′ = R†HR− iR†∂tR, giving:

H/h̄ = −αa†aa†a+ gbbb(sin(
θ

2
)ae−iωat + cos(

θ

2
)(be−iωbt + βe−iωdt) + h.c)3

+ gaabba
†eiωatae−iωat(be−iωbt + βe−iωdt)(b†eiωbt + βeiωdt).

(IV.18)

With this Hamiltonian, we can see the effect of the parametric drive more clearly.

For example, if we pump the system at a frequency of ωd = ωa + ωb (we will refer as a

‘Σ drive’ in the future), then under the rotating wave approximation which eliminate all

remaining fast rotating terms, we get this Hamiltonian:

HΣ/h̄ = −αa†aa†a+ gabb(βΣa
†b† + β∗Σab) + gaabba

†ab†b+ gaabba
†aβ∗ΣβΣ. (IV.19)
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The second term corresponds to a photon pair generation/annihilation process, where gabb =

6 gbbbsin( θ
2
)cos2( θ

2
) is the effective three-body term (the factor of 6 comes from the exapnsion

of the cube term) and βΣ is the parametric driving strength. Effectively, we are creating a

two-body coupling strength gΣ = gabbβΣ for the Σ drive generated from the combination of

Σ drive and three-wave mixing coupling. The final two terms are the undesired AC Stark

shifts, whose effects we will discuss further in the next section.

Similarly, if we pump the system at a frequency of ωd = ωb − ωa (we will refer as

‘δ drive’ in the future), we will create another interaction Hamiltonian, this time with a

photon swapping term resulting from the parametric drive:

Hδ/h̄ = −αa†aa†a+ gabb(βδa
†b+ β∗δab

†) + gaabba
†ab†b+ gaabba

†aβ∗δβδ. (IV.20)

where βδ is the average driving voltage for the δ drive. Like before, the effective two-body

coupling strength for the δ process is gδ = gabbβδ.

In addition to these drives, there will also be dissipation which needs to be taken into ac-

count. We consider two important sources of dissipation in our model, the energy relaxation

of the qubit with a rate of Γeg = 1/T1 (assume the qubit temperature is zero) and SNAIL

with a rate of κs = 1/Ts. We design the system in such a way that the qubit is weakly

coupled to the environment while SNAIL has a strong external coupling so that κs � κq.

Bath engineering is realized by combining the dissipation and drives. We start with

the ‘Σ drive’ case as an example. If we first neglect the higher order effects from the Kerr

terms, this Hamiltonian from Eq. IV.19 will be very similar to that of a JPC which operates

in the gain mode as in Sec. II.D with the only difference that one of the mode is strongly

anharmonic. We show the energy level diagram for the system in Fig. 31 where the red

numbers represent the state of the SNAIL and the blue letters represent the state of the

qubit. Similar to JPC in gain mode, if we start in the ground state of the system |0, g〉,

this pump will start to populate the qubit and SNAIL (signal and idler) mode, creates a

coherent oscillation between the state |0, g〉 and the state |1, e〉. Next, as we have made the

SNAIL mode to be very lossy compared to the qubit and drive rate (κs � κq), once the

system reaches the state |1, e〉, the photon in the SNAIL will quickly decay into the external

transmission line, leave the system in the state |0, e〉, as shown in Fig. 31(a). Effectively,
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Figure 31: ‘Heating process’: effect of the ‘Σ drive’ and dissipation. Red numbers

represent the state of the SNAIL and the blue letters represent the state of the qubit. (a)

The system starts in the state |0, g〉, then by turning on ‘Σ drive’, we create a coherent

oscillation between |0, g〉 and |1, e〉. Because of the high loss rate of the SNAIL mode, κs,

it will quickly lose its photon when system reaches |1, e〉, leave the system be in the state

|0, e〉. (b) The whole process is effectively a ‘heating process’ for the qubit, since the qubit

is incoherently brought from ground state to excited state.

the whole process behaves as if one has incoherently brought the qubit from ground state to

excited state, thus a ‘heating process’, as shown in Fig. 31(b).

One important difference between this system and a JPC is that the qubit is a anharmonic

and so the system is blocked from continually creating photon pairs. As we apply the ‘Σ

drive’, the frequency will already be α detuned when going from |1, e〉 to |2, f〉 due to the

anharmonicity of the qubit, as shown in Fig. 32. This stops the system from climbing the

Fock ladder of each mode. There are two important notes here. The SNAIL itself has a very

small Kerr term, and so the bath engineering is not strongly impacted by the state of the

SNAIL, so that the SNAIL starting in state |1〉 does not prevent the bath engineering from

functioning. More, the qubit spectrum gives us a series of heating and cooling processes

we can control with a set of sum and difference frequency pumps for the different transmon
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Figure 32: Drive selectivity due to the qubit anharmonicity. Red numbers represent

the state of the SNAIL and the blue letters represent the state of the qubit. The pump

frequency for |0, g〉 and |1, e〉 transition (Σge,s) is one α detuned from the pump that drives

|1, e〉 ↔ |2, f〉 due the anharmonicty of the qubit. This non-linearity limits the process to

happen within the |g〉 ∼ |e〉 manifold for the qubit.

transitions.

The ‘δ drive’ functions similarly, as shown in Fig. 33. The ‘δ drive’ is similar to JPC in

conversion mode, if we start in the excited state of the transmon |0, e〉, this pump will start

to create a coherent swapping between the state |0, e〉 and the state |1, g〉. Then, since the

SNAIL mode is very lossy, once the system reaches the state |1, g〉, the photon in the SNAIL

will quickly decay into the external transmission line, leave the system in the state |0, g〉,

as shown in Fig. 33(a). Effectively, the whole process behaves as if one has incoherently

brought the qubit from excited state to ground state, but at a rate much faster than the

qubit’s natural decay rate, thus a ‘cooling process’, as shown in Fig. 33(b).

In addition to the control between |g〉 and |e〉 state, the protocol can be easily extended

to the |f〉 by varying the parametric pump frequencies, as shown in Fig. 34. With the

same argument, by applying the parametric drive at frequency of ωΣef,s = ωef + ωb and
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Figure 33: ‘Cooling process’: effect of the ‘δ drive’ and dissipation. Red numbers

represent the state of the SNAIL and the blue letters represent the state of the qubit. (a)

System starts in the state |0, e〉, then by turning on ‘δ drive’, we create a coherent oscillation

between |0, e〉 and |1, g〉. Because of the high loss rate of the SNAIL mode, κs, it will quickly

lose its photon when system reaches |1, g〉, leave the system be in the state |0, g〉. (b) The

whole process is effectively a ‘cooling process’ for the qubit, since the qubit is incoherently

brought from excited state to ground state.

ωδef,s = ωb−ωef (where ωef = ωa−α is the qubit ef transition frequency), we can create the

‘heating’ and ‘cooling’ processes respectively between the |e〉 and |f〉 states.

As we see in Eq. IV.6, for a system thermalizing to a bath (the lossy SNAIL in our

case) at a fixed temperature given by β, a controllable chemical potential indicates that the

final equilibrium can still be tuned by the value of the chemical potential µ. In the original

proposal, this effect is enabled by changing the frequency of the parametric drives. Here in

our case, as we have all the control knobs of the ‘heating’ and ‘cooling’ processes between

the |g〉, |e〉 and |f〉 states, we can control these up-going and down-going rates by tuning the

strength of the corresponding drives. Both the final (incoherent) steady state and the rate

at which system reaches such state can be set by carefully choosing the magnitudes of these

drives. Therefore implement the system with a controllable chemical potential.

83



ȁ ۧ0, 𝑒

ȁ ۧ0, 𝑔

ȁ ۧ1, 𝑒

ȁ ۧ1, 𝑓

ȁ ۧ2, 𝑓

Σ𝑒𝑓,𝑠

Γ𝑒𝑓

ȁ ۧ0, 𝑒

ȁ ۧ0, 𝑔

ȁ ۧ1, 𝑒

ȁ ۧ1, 𝑓

ȁ ۧ2, 𝑒 𝛿𝑒𝑓,𝑠

Γ𝑓𝑒

Σ𝑒𝑓,𝑠 pump 𝛿𝑒𝑓,𝑠 pump

𝜅𝑠

𝜅𝑠

𝜅𝑠

𝜅𝑠

(a) (b)

Figure 34: Schematics of ef control. Red numbers represent the state of the SNAIL and

the blue letters represent the state of the qubit. (a) System starts in the state |1, e〉, then by

turning on ‘Σef,s drive’ with ωΣef,s = ωa − α + ωb, we create a coherent oscillation between

|1, e〉 and |2, f〉. Because of the high loss rate of the SNAIL mode, κs, it will quickly lose its

photon when system reaches |2, f〉, leave the system be in the state |1, f〉 the whole process

is effectively a ‘heating process’ for the qubit between the e and f state. (b) System starts

in the state |1, f〉, then by turning on ‘δef,s drive’ with ωδef,s = ωb − (ωa − α), we create a

coherent oscillation between |1, f〉 and |2, e〉. Because of the high loss rate of the SNAIL

mode, κs, it will quickly lose its photon when system reaches |2, e〉, leave the system be in

the state |1, e〉 the whole process is effectively a ‘cooling process’ for the qubit between the

e and f state. Note that this process can also be used for focing f state back to e when we

are only interested in the processes in the two-level system.

3. Master equation and numerical results

To solve the full, lossy dynamics of the engineered system, one needs to consider the

quantum master equation of the system. A detailed derivation of master equation for an

open quantum system can be found in reference [86]. Specifically for our setup, we consider

a transmon qubit coupled to a lossy SNAIL which in turn has a single parametric drive

applied to it. The system Hamiltonian is given in Eq. IV.18. For the dissipator terms, we
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consider the damping rates κq for the qubit, κs for the SNAIL and also a thermal excitation

rate κq−up for qubit due to the finite temperature of the sample. With the Hamiltonian and

the dissipator terms, we can write the master equation as:

dρ

dt
=

1

ih̄
[H, ρ] +D(

√
κqa)ρ+D(

√
κsb)ρ+D(

√
κq−upa

†)ρ (IV.21)

where ρ is the density matrix of the system, while D(O)ρ = OρO† − 1
2
{O†O, ρ} describes

the effect of the dissipators. This equation can be solved numerically. Here we are going to

discuss several important cases with different pump conditions.
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Figure 35: Simulation result for natural decay. All plots are qubit state probability for

different energy levels as a function of time for different initial states. No drive is applied to

the system. In each case, the qubit thermalizes to a state whose population distribution is

set by the bath temperature regardless of the initial state of the qubit.

Let us first start with the simplest case, when there is no parametric drive applied to

the system. Then under the rotating wave approximation, the Hamiltonian is simplified to

an uncoupled qubit mode and SNAIL mode, as none of the third order terms can survive

the approximation. In Fig. 35, we start with different qubit initial states: |g〉, |e〉 and |f〉

and plot the population number of each qubit level as a function of time. The parameters

are ωa/2π = 4.0 GHz, α/2π = −200 MHz, ωb/2π = 8.5 GHz, κs/2π = 16 MHz, κq/2π =

0.052 MHz and κq−up/2π = 0.013 MHz (the decay rates match a particular instance of our

experiment which expired duing the COVID 2019 shutdown). Despite the different initial
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states, due to the effect from both photon decay and thermal excitation, the qubit will

finally reach a steady mix state, where the ratio between the population of each energy level

is controlled by the rates of the ‘up going’ and ‘down going’ processes.
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Figure 36: Simulation result for Σge,s drive at different driving strengths. All plots

are qubit state probability versus time. The qubit is prepared in ground state. When the

Σge,s drive is on, the |e〉 state population starts to increase, as expected. As the driving

strength becomes stronger, the qubit both thermalizes to its equilibrium faster and also the

excited state population is larger, indicating a ‘hotter’ qubit. As we keep increasing the

drive strength, we reach a population inversion state for the qubit (with a negative effective

temperature), which is not realizable by thermalizing the qubit to a natural heat bath.

Next we move to a slightly more complicated case: single ‘Σge,s drive’. As we discussed

previously, now the Hamiltonian under the rotating wave approximation for this case is

H/h̄ = −αa†aa†a + gΣ(βΣa
†b† + β∗Σab), where we neglect the cross-Kerr terms whose effect

will be discussed later. The decay parameters we are using are the same as in the undriven

case, while the parametric driving strength is varied from 0.1 MHz to 0.4 MHz. In Fig. 36,

we show the results of how the population changes vs. time under these different Σge,s

driving strengths when qubit starts in ground state. As we expected from the argument in

the previous section, with the Σge,s pump on, the system begins to heat up: the ground state

population decreases while the excited state population increases. We also note that as this

pumping strength gets stronger, there is some non-zero population of the |f〉 state. The rate

at which system thermalizes to its equilibrium (1/T1 = Γeg + Γge) increases as we turn on

the pumping strength. The population distribution in equilibrium is determined by both

the qubit decay rate Γeg, which is unchanged, and the heating rate which is now dominated
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Figure 37: ‘Σge,s drive’ Γge and Γeg vs pump strength. The ‘heating’ rate Γeg as a

function of driving strength. The rate for each data point is extracted from an exponential

fitting from the result similar to Fig. 36. The observed heating rate scales quadratically with

ump power.

by the parametrically generated heating process. The relation between this thermalizing

rate and the corresponding pumping strength is shown in Fig. 37. As the overall process is

a competition between ‘measurement’ by SNAIL photon decay and coherent Rabi driving,

we expect to see a quadratic (rather than linear) relation between pump drive voltage and

qubit relation rate. Therefore we fit the result to a quadratic model and the fitting curve

demonstrates a good agreement to the simulated result, showing our understanding is correct.

Another similar example is the single ∆ge,s drive, the Hamiltonian for this case is H/h̄ =

−αa†aa†a+gδ(βδa
†b+β∗δab

†). We use the same parameters for the simulation with a driving

strength changing from 0.1 MHz to 0.4 MHz. In Fig. 38, we show the result of how the

population changes as time under different δge,s driving strengths when qubit starts in excited

state. With the δge,s pump on, the excited state population starts to decrease but at a rate

faster than its natural decay and as we increase the driving strength, not only qubit decays

faster but also it reaches a equilibrium with more ground state population. By comparing
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Figure 38: Simulation result for δge,s drive at different driving strengths. All plots

are qubit state probability versus time. The qubit is prepared in excited state. When Σge,s

drive is on, the |e〉 state population starts to decrease more quickly, as expected. As the

driving strength becomes stronger, the qubit thermalizes to its equilibrium faster and also

the ground state population is larger, indicating a ‘cooler’ qubit.

the final population distribution with the natural decay case in Fig. 35, we note that with the

‘cooling’ process on, the qubit indeed thermalizes to a new state that has a lower temperature.

Next, as we want to control both the final population distribution and the rate that

system reaches to that state, we need to apply the ‘Σ’ and ‘δ’ drives at the same time

with carefully chosen strengths. In this case, the Hamiltonian for the system is: H/h̄ =

−αa†aa†a+ gΣ(βΣa
†b† + β∗Σab) + gδ(βδa

†b+ β∗δab
†). Its effect is shown in Fig. 39, where we

plot the population number as a function of time for the single and multi-pump cases. In the

single pump case, we apply a ‘Σge,s’ pump with a strength of 0.1 MHz and for the multi-pump

case, we use a 0.48 MHz ‘Σge,s’ pump and a 0.3 MHz ‘δge,s’ pump. In both pumping schemes,

the qubit thermalizes to a steady state with the same population distribution, corresponding

to the same chemical potential. It is also clear to see that with both pumps on, the system

reaches the equilibrium faster than the single pump case showing that by carefully choosing

the strengths of the ‘heating’ and ‘cooling’ processes we can control both the final state of

the system and the rate it goes to that state, thus creating a controllable bath for the qubit.

This can be explained by the Kerr effect which we neglect when considering the single

pump process, and this can be a limitation to the performance of some single pump process
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Figure 39: Simulation result for single and multiple parametric drives. All plots

are qubit state probability versus time. The qubit is prepared in ground state. (a) We apply

a single Σge,s drive to the system with a strength of 0.1 MHz. The qubit starts heating as

we turn on the drive and it thermalizes to a distribution with Pg = 0.29, Pe = 0.63 and

Pf = 0.08. (b) We apply a a 0.48 MHz ‘Σge,s’ pump and a 0.3 MHz ‘δge,s’ pump. Now the

system still thermalizes to the same population distribution, but at a much faster rate(τge

of ∼ 10 µs vs ∼ 1 µs). This shows that by applying multiple parametric drives we can

independently control both the relaxation rate and the final thermal state populations.

as we have seen in our JPC research [81, 82, 89]. It is alos very important when we try to

implement a multi-parametric pumping process like we are trying to do here, as each pump

will change the behavior of the other pumps by a fair bit, like we see in [120].

To see this effect clearly, we consider the Hamiltonian with fourth order terms:

H/h̄ = −αa†aa†a+ gΣ(βΣa
†b† + β∗Σab) + gδ(βδa

†b+ β∗δab
†) + gssqqa

†a(β∗ΣβΣ + β∗δβδ) (IV.22)

The Kerr effect comes from the last term in the Hamiltonian which will shift the mode

frequency with pump photons. This extra detune in frequency will result in a decrease of

the pump rate as the drive is no longer on resonance and thus require a frequency correction

to achieve the optimal pumping conditions. To understand this effect we drive the system
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Figure 40: Kerr effect on δge,s drive. The excited state decay time as a function of

different pump conditions. The qubit is prepared in excited state and we apply a δge,s pump

to the system. We sweep the frequency and strength of the pump and record the e state

population as a function of time. Then the decay of this population is fit to an exponential

model to extract the decay time.

with a single ‘δge,s’ drive and sweep the drive strength and frequency. The qubit starts in

the excited state, and we fit the decay of the e state population with an exponential model.

In Fig. 40, we plot this decay time as a function of the pump conditions. The optimal

pump frequencies (the points with fast decay rate), are moving negatively as we increasing

the pumping strength. This is very important as we apply multiple pumps to the system,

as extra frequencies detune need to be considered for all the processes to reach the designed

rates. A more detailed comparison between the experimental data and simulation results

shown in this section will be discussed in the next chapter.
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E. Conclusion

In this chapter, we introduced a pair of linked theoretical proposals that address the bath

engineering the steady-state population and decay rates of photonic systems. In the first

(dubbed a ‘photon chemical potential’), by a parametrically coupling the photonic system

to be controlled (a transmon qubit in our case) to a finite-temperature (and hence also low-

frequency) auxilliary mode, the system can equilibrate to the temperature of the bath, with

a tunable chemical potential that is controlled by the parametric drive. We discuss how to

implement this proposal with a JPC with one arm at very low frequencies, and the other

hyridized with a transmon qubit. This works in principle but has practical challenges as

one of the mode frequency is one order of magnitude lower than the conventional JPC mode

frequencies.

We next explained a more promising variation of this protocol, which is to have the trans-

mon mode coupled to a single lossy SNAIL mode. By parametrically driving the SNAIL,

we can trigger the ‘heating’ and ‘cooling’ processes for the qubit independently, and no

longer depend on the SNAIL-mode having a low frequency and finite temperature (in fact

it is preferable to have it at frequency not too dissimilar from the qubit). Detailed numer-

ical simulations show that we indeed have independent control of the heating and cooling

processes, and can implement them jointly provided we compensate for cross-Kerr related

frequency shifts in the system. Therefore the photonic system with a controllable chemical

potential can be realized with the carefully chosen drive conditions. In the next chapter, we

show the experimental realization of both methods (JPC- and SNAIL-based) and compare

our simulation results to the data.
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V. From Hamiltonian to microwave design

A. Overview

In the previous chapter, we clarified the design the corresponding Hamiltonian we will

use for the experiment. The next step requires us to transform the numerical simulation pa-

rameters into the target values that can guide the microwave design, and then into physical

modes in metal cavities and on sapphire chips. The technique needed for the task is called

‘black box quantization’ (BBQ). In this chapter, I will use the qubit-cavity and qubit-SNAIL

coupling as examples to demonstrate how we can use the BBQ method to make the connec-

tions between the parameters in physical microwave design and terms in Hamiltonian and

to arrive at functional, practical devices.

B. Black box quantization

Black box quantization [122] is a semi-classical method that is originally used to de-

termine the effective quantum Hamiltonian of a superconducting circuit that contains a

Josephson junctions coupled to electromagnetic environments. This method teaches us how

to take the simulation result we obtain in the microwave simulation software (like HFSS)

and transform it into the coefficients of our Hamiltonian. It is designed for calculating the

anharmonicity and dispersive shift for a qubit-cavity system, but it can easily extend to the

calculation of third order couplings between the modes, like a qubit coupling to a SNAIL in

our chemical potential project.

Let us review how the method works for the qubit-cavity system as a start. The theory

treats the fourth order terms as perturbations. Therefore, the junction will be viewed as

two parts: a purely nonlinear element whose energy is given by EJ(1− cos(ϕ))− (EJ/2)ϕ2,

a linear inductor with inductance LJ0 = ϕ0/I0 and a linear capacitor with capacitance Cs,

as shown in Fig. 41(a). Then the linear part of this model will be absorbed into the linear
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Figure 41: Schematic of black box quantization. (a) A transmon qubit couples the

environment. The transmon is viewed as three different parts. The nonlinear part of the

junction with Josephson energy EJ (represented by the cross symbol), the linear inductance

LJ and the capacitance CJ . (b) The linear part of the transmon is absorbed into the

environment black box. The modes in the environment is synthesized by an equivalent

circuit of several parallel LC oscillators in series using Foster’s theorem. Adapted from [122]

.

modes of the system (cavity mode) and together they form the ‘black box’ environment seen

by the qubit. According to Foster’s theorem [123], this black box can be synthesized by

an equivalent circuit of several parallel LC oscillators in series, as in Fig. 41(b). Then the

Hamiltonian of the system can be written as:

H = Σp(
CpQ

2
p

2
+
LpΦ

2
p

2
)− 1

24
EJϕ

4 (V.1)

where Cp, Lp, Qp and Φp are the linear capacitance, inductance, charge and flux of the mode

p respectively. To write it in terms of creation and annihilation operators use the same

quantization technique in Ch. II, we have:

H = Σph̄ωpa
†
pap −

1

24
ϕ4 (V.2)
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where ωp = 1/
√
LpCp is the frequency of each mode. In the case of a qubit-cavity system,

p = q, c for qubit and cavity. ϕ is the flux across the nonlinear part of the junction and

Kirchhoff’s law requires that ϕ = ΣpΦp/ϕ0:

ϕ = Σp

√
h̄

2
Zeff
p (ap + a†p) (V.3)

where Zeff
p is the effective impedance of each mode seen by the junction. Note that the

treatment here is effectively the same as the diagnolization we did for a coupled qubit-

system in Ch. II. Now the question becomes how to determine the value of Zeff
p from the

microwave simulation. The expression is given by the admittance Y (ω) with:

Zeff
p =

2

ωpIm[Y ′(ωp)])
(V.4)

and the resonator frequency of each mode can be identified by the zero point of the imaginary

part of the admittance: Im[Y (ωp)] = 0. The admittance function Y (ω) can be obtained from

the microwave simulation software like HFSS. Then by finding its zero point and the slope

at that point, we are able to calculate the quantization coefficients of each mode, and then

by substituting them into Eq. V.2 and Eq. V.3, and expand the fourth term, we will be able

to write down the important parameters like frequency, anharmonicity and dispersive shift.

We can then tune the geometry of the design (like the size of the cavity, position of the

qubit, size of the qubit antenna, ect.), and simulate the Y (ω), repeat the same calculation

until we get the desired the Hamiltonian as we will show in Ch. VI.

Similarly in the SNAIL calculation, we will treat the third order terms as the perturba-

tions. Now the Hamiltonian is:

H = Σp(
CpQ

2
p

2
+
LpΦ

2
p

2
) + c3ϕ

3 (V.5)

where c3 is the third order coefficient we get from a SNAIL calculation, as will be discussed

in next section.
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C. SNAIL coefficient calculation

As we discussed in Ch. II, the SNAIL Hamiltonian as in Eq. II.49, can be Taylor expanded

near its energy minimum ϕmin, as shown in Eq. II.50. Let ϕ̃ = ϕ− ϕmin, we have:

HSNAIL = c2ϕ̃
2 + c3ϕ̃

3 + c4ϕ̃
4 + ... (V.6)

with

c2 =
1

6
EJ(cos(

ϕext − ϕmin
3

) + 3αcos(ϕmin))

c3 =
1

54
EJ(sin(

ϕext − ϕmin
3

)− 9αsin(ϕmin))

c4 = − 1

648
EJ(cos(

ϕext − ϕmin
3

) + 27αcos(ϕmin))

(V.7)

and ϕmin is determined by finding the extreme point of the energy:

∂HSNAIL

∂ϕ
|ϕ=ϕmin = EJαsin(ϕmin)− EJsin(

ϕext − ϕmin
3

) = 0 (V.8)

Once the circuit parameter α and EJ is determined, we can solve the SNAIL coefficient by

first numerically get the value of energy minimum point as a function of the external flux:

ϕmin = ϕmin(ϕext). Then plug this result into the expression of each coefficients, we able to

get c2(ϕext), c3(ϕext) and c4(ϕext).

As we want to use the SNAIL as a dipole element with a pure third order nonlinearity,

we need to operate it at a fourth order cancellation point, that is the external flux which

gives c4(ϕext) = 0. Then once we get this good operation point, we can calculate the second

order coefficient c2(ϕ), which will lead to a linear inductance term used in the BBQ as:

Ls =
φ2

0

2c2(ϕext)
(V.9)

and the third order coefficient c3 is like −1/24EJ in the qubit-cavity example.

So to calculate the coupling between the SNAIL to another mode, with the same tech-

nique in the previous section to find the mode frequency and effective impedance, we get:

H = Σph̄ωpa
†
pap + c3(Σp

√
h̄

2
Zeff
p (ap + a†p))

3 (V.10)

the coupling strength we used in Ch. VI is obtained by expanding the cubic term.
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D. User’s manual for BBQ

The method we described in this chapter can be used in the calculation of other dipole

element with different order of nonlinearity. And the nonlinear element can couple to different

modes in the system, so that a multi-wave coupling can be generated. To follow this method,

we need to:

A. First calculate the behavior of the nonlinear element, expand its nonlinear potential

around its energy minimum point.

B. We will then be able to separate the linear part (second order term) from the higher

order terms in which we will keep the lowest order as a perturbation of the system. The

linear term will be absorbed into the black box seeing be the pure nonlinear part of the

device and lead us to a more generalized Hamiltonian:

H = Σp(
CpQ

2
p

2
+
LpΦ

2
p

2
) + cnϕ

n (V.11)

where cn is the coefficient of the corresponding nonlinear term. Here we assume we are using

the Josephson junction based device, so the nonlinearity comes from the flux part of the

device. The Hamiltonian can be quantized using Eq. V.4, with the effective impedance and

mode frequency obtained from the data of the microwave simulation.

C. Then due to the Kirchhoff’s law: ϕ = ΣpΦp/ϕ0. We can re-write the Hamiltonian in

the form of the operators. Note that the Foster theorem takes care of the mode diagonaliza-

tion, so the mode we get in the final Hamiltonian is already in the dressed basis. Then the

Kirchhoff’s law indicates that the nonlinearity from the bare mode of the nonlinear device

is distributed into all the dressed modes, with a weight given by the effective impedance

seen by the element. The magnitude of this effective impedance is determined by the cou-

pling strength between a certain mode to the nonlinear mode which will then reflect in the

amplitude of the coupling terms in the expansion.

For the interested reader, he laboratory has since largely switched to the Energy par-

ticipation ratio form of BBQ [124] for the similar tasks but it is faster to simulate. We

also note that a more complicated theory is needed for the system with multiple nonlinear

devices with different order of nonlinearity, there are currently theory treatments for this
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type of problems in [125], and more careful understanding is needed for connecting it with

the microwave simulation results.
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VI. Qubit-bath engineering via parametric drive: Experiment

A. Overview

In this chapter, we introduce experimental realizations for the proposals we discussed

in the previous chapter. This chapter is organized as follows: We begin in Sec. VI.B by

introducing the how to directly implement the original theory proposal via a low frequency

JPC. We will discuss the design and fabrication of the sample, as well as the practical issues

which hampered this implementation. In Sec. VI.C, we demonstrate bath engineering by

instead parametrically coupling a qubit to a lossy SNAIL mode. We discuss the design

and fabrication of the samples and focus on comparing the data to the simulation result in

the previous chapter. Next, in Sec. VI.D, we discuss the significance of this experimental

platform and its potential application in other projects.

B. Low frequency JPC

1. Transmission line based low-frequency JPC

In this section, we are going to talk about the experimental implementation of the original

Hafezi proposal [70] with a low frequency JPC. As we discussed in the previous chapter, this

low frequency design has a few special requirements compared to a conventional JPC with

more usual signal and idler frequencies (5 ∼ 12 GHz). Firstly, we need a large bandwidth

at the very lower frequency (idler) mode so it can decay rapidly. Secondly, there should be

no harmonic of the idler or common mode near the pump frequency, so that the parametric

pump can be considered to be ‘stiff’. Thirdly, there should be enough coupling between

the low and high frequency mode so the parametric process can be driven with a moderate

strength that will not trigger other undesired higher order effects. Finally, high frequency

(signal) mode needs to have a low bandwidth, that is, the photons need to live long enough
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for the thermalization to be done, and it should be relatively anharmonic (that is, a qubit).

Since the modes in a conventional JPC live use transmission line based λ/2 resonators,

a low frequency mode can be realized by using a long transmission line that can hold the

standing wave with the correspondingly long wavelength. However, there will be many higher

harmonics of this low frequency mode. To prevent them showing up near the signal mode,

we need to integrate a band pass filter into the idler resonator. The filter is designed using

a impedance engineering technique [126,127]. It consists of alternating sections of high and

low impedance coplanar waveguide transmission lines which result in a wide stop band near

the signal frequency with carefully chosen parameters. In Fig. 42(a) we show the design of

the low frequency JPC with the built in filter simulated in Microwave Office (a microwave

circuit simulation software). Figure 42(b) is the schematic of each unit cell of the filter that

consists of a low and high impedance transmission line. Figure. 42(c) shows simulation result

for the transmission coefficient from ‘idler’ port to the ‘signal’ port. There is a clear stop

band (below 50 dB attenuation) from 6 ∼ 9 GHz which prevents the higher harmonics of

the common and idler modes from appearing near the pump frequency and signal mode.

This design was realized with etched Nb resonators on a silicon chip provided by the

Houck group at Princeton University. A picture of the chip and sample mount (also provided

by the Houck laboratory) is shown in Fig. 43. The next step was to fabricate the JRM onto

the device. In Fig. 44 we show the optical images of the different JRMs we used in the

experiment. Figure. 44(a) demonstrates the first version of JRM we worked with, which

has shunted linear inductors to prevent hysteresis. However, this extra inductance will also

decrease the participation ratio of each mode, resulting in a lower coupling strength between

the modes which makes it harder to drive the desired parametric processes. Thus, in order

to achieve a higher participation ratio, we get rid of the shunted linear inductors and created

the second version of the JRM, as shown in Fig. 44(b).

We were able to perform basic measurements on this second JPC (note: a qubit had not

been added yet to hybridize with the signal mode). In Fig. 45, we show the reflection phase

data of the ‘idler’ and ‘signal’ mode of the device. The accurate frequency and bandwidth

of each mode can be obtained by fitting the data to a reflection model. The low frequency

‘idler’ mode is at 230 MHz with a bandwidth of 18 MHz (Qext = 13 and Qint = 2653) and
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Figure 42: Bandpass filter design for low frequency JPC. (a) The schematic of the low

frequency JPC with bandpass filter in microwave office. The single mode is simulated as two

transmission lines connect to the JRM with linear inductors. The idler mode is made with

a group of transmission lines of alternating sections of high and low impedance transmission

lines. The JRM in the center is simulated with four identical non-linear inductors. The

current source is used to simulate the external flux that goes through the JRM. (b) The

unit cell that builds the bandpass filter. The idler arm is made with this cell being repeated

several times. (c) The simulation result of the transmission coefficient from ideler port to

signal port as a function of frequency. We can see a clear stop band near the pump frequency

as expected.

the high frequency ‘signal’ mode is at 7.255 GHz with a bandwidth of 2 MHz (Qext = 4896

and Qint = 5966).

Now, with the modes at the desired frequencies, we need to parametrically drive the

device as we discussed in the previous chapter. As the signal mode is not anharmonic, the

chemical potential behavior will not appear, but we can characterize the parametric drives

by studying the gain and conversion behavior of this rather exotic JPC. In Fig. 46 we show

the results of the strongest gain and conversion process we could achieve in this device. The
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Figure 43: Optical images of low frequency JPC. (a) Optical images for the JPC

chip. The straight horizontal transmission line resonator is the signal mode. The meander

transmission line with varying width is the idler mode that has filter built in. The inset shows

a zoomed-in image of the unit cell of the filter that corresponds to Fig. 42(b). (b) Image of

the JPC chip loaded in the sample holder. The wire bonds throughout the sample edge and

surface are to better connect the ground plane to get rid of other undesired parasitic modes.

gain of a JPC is given by [83]:
√
G =

1 + |ρ0|2

1− |ρ0|2
(VI.1)

and the dimensionless pump amplitude ρ0 is given by:

ρ0 =
2g3
√
n̄pe

−iϕp
√
κsκi

. (VI.2)

where κs and κi are the bandwidth of the signal and idler mode respectively, g3 is the third

order coupling term for the JPC, n̄p is the average pump photon number, and ϕp is the pump

phase. So with κs and κi and G, we can calculate the parametric coupling strength for the

gain, gG = g3

√
n̄G = 0.72 MHz, and conversion, gC = g3

√
n̄C = 1.1 MHz.

As we discussed before, the photon in the signal mode should live long enough for the

thermalization process to finish, that is, the rate of the parametric drive should be faster

than the decay rate of the signal mode: gG > κs and gC > κs. Unfortunately, this is not the
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Figure 44: Optical images of the JRM.(a) The picture of the first version of the JRM

with linear shunting inductors in the middle to prevent hysteresis. (b) The picture of the

JRM we used in the final version of the device. We eliminated the shunting inductors to

achieve a higher JRM participation ratio and hence stronger three-wave couplings.

case for this device, where κa = 2 MHz. There are two reasons for this: firstly, in order to

make a mode with a frequency one order of magnitude lower than the conventional value,

we have to use a long transmission line as the resonator which will introduce large linear

inductance and thus lower the participation ratio (see Eq. IV.10) of the mode. And for the

third order coupling strength g3 [80]:

g2
3 ∝ pspipcωsωiωc (VI.3)

where pi is the participation ratio of each mode. So, it is clear that a low frequency, low

participation ratio mode will decrease the third order coupling strength. Given that we are

limited in how much pump power we can apply to the dilution refrigerator without heating

the fridge, and that higher-order nonlinearities can also be activated by too-strong pump-

ing, this places an ultimate limit on the achievable parametric pumping rate. Both issues

were problematic in this sample, though we believe the latter was the ultimate limitation.

Secondly, because we were not able to make an excellent superconducting contact between

the Nb (resonator) and Al (JRM), which resulted in a low internal Q of the signal mode.
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Figure 45: Phase data of the modes of the low frequency JPC. The reflected phase

as a function of frequency for the (a)idler and (b)signal mode. Note that there are several

idler harmonics, with the lowest at 0.2 GHz. The internal and external Q of each mode

can be extracted by fitting the data (including amplitude response which is not shown) to a

reflection model.

2. Lumped low-frequency JPC

To address the participation issue, We next tried to improve the JPC idea by fabricating

a lumped version which replaced the transmission line with parallel plate capacitors. A

schematic of this lumped idea is shown in Fig. 47. In this circuit, the low frequency can now

be achieved by with a large, lumped capacitor (with minimal stray inductance compared to

a long transmission line shown in Fig.7), and thus the participation ratio can be higher than

the old design. More, there will be no higher harmonics of the idler mode near the signal

mode, and so the device requires no internal filter.

This design was first simulated using Ansys’ High Frequency Structure Simulator (HFSS)

software. The 3D model for the lumped JPC is shown in Fig. 48(a). The structure (and

hence fabrication) of a lumped JPC is more complicated than a transmission line based

JPC. We first need to lay down a layer of NbTiN (yellow) on the Silicon chip (light blue)

using optical lithography technique as the ground plane. This material has advantages over
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Figure 46: Gain and conversion data for low frequency JPC. The amplitude of the

reflected signal as a function of frequency near the idler mode when the device is operated

in the (a)amplification and (b)conversion mode. The result shown here is the maximum

gain/conversion we could achieve from this device. The rate of the parametric processes can

be calculated from Eq. VI.2 (see text for more details).

other choices such as Nb and Al in terms of making contact to subsequent aluminum layers,

however, in this fabrication it is primarily used as it was a fabrication process the lab had

good experience with. Then, a layer of e-beam evaporated sapphire (orange) is deposited

through and optical mask on top of the ground plane to serve as the dielectric layer for the

lumped capacitors. Finally, the junctions and the top pad of the capacitor is deposited on

the top of the sapphire layer using the E-beam lithography technique. A zoomed picture of

the device is shown in Fig. 48(b). Here we can see the JRM is placed in the center, where

the capacitor pads (dark blue) of signal (vertical pad) and idler (horizontal pad) cross each

other. The capacitance of each mode (ca and cb in Fig. 47) is determined by the pad area

that overlaps with the ground plane (yellow).Therefore the capacitor pad of the idler mode

is much larger compare to that of the signal mode, as the idler frequency (∼ 300 MHz )is one

order of magnitude lower than the signal frequency (∼ 7 GHz). The coupling capacitor is

formed by the top pad (dark blue), the dielectric layer (orange) and the external transmission

line (green) that is on the same layer as the ground plane. Thus, the the external coupling
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Figure 47: Circuit schematic for lumped low frequency JPC. The JRM is in parallel

with two sets of capacitors to form the lumped resonators that replace the transmission line

resonators in the microstrip JPC as in Fig. 7. By minimizing the linear inductance in the

device, we raise the participation ratio of each mode and thus increase the coupling strength

between the modes.

strength of each mode is controlled by the overlapping area between the top pad and the

transmission line. The inset of Fig. 48(b) shows the structure of the JRM, which is very

similar to the JRM in a microstrip JPC, there are four small junctions (little red pad) on

the outer arm of ring of the JRM and large shunted linear inductors (the red cross) in the

middle of the ring. For future Hatlab reference, the HFSS file of this design is located in:

F:/HFSS/LJPC.

Once the device is successfully fabricated, it follows the same step as a microstrip JPC to

be assembled. The amplifier chip will first be glued to the copper sample box as in Fig. 7(d)

using silver paste. Then it is mounted on a copper holder with a magnetic coil attached to

it. The whole device is placed in a Aluminum shield that is inside another cryoperm shield

made with high-µ metal to prevent influence from external field fluctuations.

However, we are not able to see a clear mode nor a gain/conversion process near the

designed low frequency. There could be potential issue in the output channel as we don’t
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(a) (b)

Figure 48: 3D model for lumped low frequency JPC in HFSS. We try to implement

the a lumped JPC. Our design is modeled in HFSS to determine the design parameters

for right mode frequencies. (a) An overview of the device that couples to the external

transmission lines (green). (b) A zoomed in picture shows the details of the lumped JPC.

The whole device is made on the sapphire chip (light blue) with a layer of ground plane

(yellow) made with NbTiN on top of it. Then, another layer of sapphire (orange) is deposited

on top of the ground plane at designated area. Finally the top pad of the lumped capacitor

(dark blue) and junctions and linear shunts(red) are deposited on the top of the sapphire.

See text for the details of the fabrication. Inset: a zoomed picture of the JRM.

have a good circulator/isolator that is designed to work at such low frequency. It could also

be there is some bad connections between the chip and the external transmission line that

happens at the packaging stage when preparing the sample. There are two reasons we did

not keep pushing on this design. Firstly, according to the result of other lumped JPCs made

by my colleagues [120], the internal Q are still on the order of a few thousand which is still

not enough for our need (∼ 10000). More, to completely implement the proposal, we need to

add a qubit-cavity system onto the chip while engineering the qubit to have a strong enough

coupling between the signal mode while maintaining a decent coherence time. This raises

extra complexities for the design and fabrication process. Secondly, as we worked through

the project, we come up with a simpler, yet more promising design using a 3D transmon and

a lossy SNAIL which we will discuss in the next section.
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We do believe the difficulties we are having with this lumped low frequency JPC can be

solved with a more careful fabrication and trouble shooting with the input/output lines of

the fridge. While we found that the lossy SNAIL is indeed more promising for this particular

project, the idea of using lumped elements to design a JPC with a mode whose frequency is

lower than the conventional value still has potential uses.

C. Qubit parametrically coupled to a lossy SNAIL

1. Microwave design and fabrication of the sample

Before we start to introduce the final version of our design I want to briefly mention a

transitional design between a low frequency JPC version and a lossy SNAIL version. We still

try to create a three-wave coupling between a non-linear mode and a low frequency mode

through a SNAIL. But, instead using a transmission line based resonator in the JPC, we

directly use a transmon qubit and a resonator with large inductance provided by an array

of junctions [128, 129]. The schematic of this design is shown in Fig. 49(a). The transmon,

SNAIL and the low frequency resonator is fabricated on the sample chip which will be placed

in a two-part sample holder. The Aluminum part is a 3D coaxial cavity which will be used

for qubit readout and the Copper part has a tube in it for placing the sample and allows

the external flux to go through the SNAIL. In design, we directly couple a low frequency

mode to an anharmonic mode, so there will be no more needs of integrating a qubit onto

the amplifier chip as we would have to do in the JPC version. And given the typical life

time of a transmon in an Aluminum cavity (∼ 30− 50µs), the photon in the qubit can live

long enough for the thermalization process to be finished provided the system could have a

similar coupling strength as that in the JPC version. However this design is less ideal as we

have difficulties seeing the coupling between the SNAIL and the lower frequency resonator

mode in the HFSS simulation and there are two major challenges for fabrication: firstly, the

large area of the antenna pad will need a long writing time during which the beam may be

drifting. Secondly, there is a non-trivial chance that some of the junctions are bad in the
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low frequency mode due to the large number of Josephson junctions.
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Figure 49: Summary of the ‘three-mode’ version with SNAIL and array low

frequency resonator. (a) Schematic of the new ‘three-mode’ design. A transmon qubit

(blue) is coupled to a low frequency mode (green) through a SNAIL mode (red). The low

frequency mode is achieved by using a junction array shunted with an antenna capacitor.

The chip is placed in a two-part sample holder. The aluminum part is a 3D coaxial cavity

which will be used for qubit readout and the Copper part has a tube in it which holds the

SNAIL and low-frequency modes and allows the flux tuning of the SNAIL. (b) The klayout

file of the design. (c) Zoomed in picture that shows the details of the junctions used in the

three components. The qubit is designed to be 4.3 GHz with an anharmonicity of 180 MHz,

the SNAIL is design to be at 9 GHz, and the low frequency mode is designed to be at

300 MHz.

We still faced challenges hybridizing with the low-frequency mode due to the use of too

much inductance lowering the participation ratio. This remains a problem even with the

‘three-mode’ design. Happily, while we were still searching for a solution, another ongoing

project in lab inspired us. In that project, we were trying to build a microwave laser (maser)

using a system consisting of a lossy SNAIL which controls a transmon qubit to form the

masing medium. The transmon is in turn resonantly coupled to a high Q (maser) cavity.

Simulations for the maser project showed that by detuning the transmon and cavity and
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driving the SNAIL and transmon in same way as we would do for a gain process in the

JPC, we are able to achieve a ‘maser ratchet’, that is, to see the population inversion on

the qubit. In retrospect, this is directly the ’heating’ component we wish for our chemical

potential project, as described in the previous chapter. Thus, we arrived at our final and very

successful implementation of the ’photon chemical potential’. We modified our plan from

Fig. 49 to the final version, as shown in Fig. 50(a). Here we just get rid of the low frequency

mode with the junction array as we no longer need the low frequency mode, and rely on

multiple parametric drives to give control of bot the transmon temperature and relaxation

rates. Similar to the previous case, we now put both the transmon and SNAIL on the same

chip. This chip is then placed in the same two-part sample holder. In Fig. 51, we show

the final version of the 3D model we used for the microwave design in HFSS. The junctions

for the qubit and SNAIL are modeled as a lumped inductor. The inductance is set as the

linear inductance value for the qubit and SNAIL at superconducting temperature. In our

case, we choose the qubit inductance to be Lq = 10 nH and the SNAIL inductance to be

Ls = 0.1 nH which is the inductance value for the SNAIL at fourth order cancellation point,

see AppendixV.C. These values correspond to an transmon junction with a critical current

Iq0 = 0.03 µA, and SNAIL with the EJ ratio of α = 0.23 and a large junction critical current

IS0 = 1.32 µA at flux point ϕext = 0.76π.

We use the original, admittance-based black-box quantization (BBQ) method [122] to

transfer the design parameters into the coefficients of the device Hamiltonian. As a note to

the interested reader, the laboratory has since largely switched to the Energy participation

ratio form of BBQ [124] as it is faster to simulate, but this design predates its adoption. We

obtain the parameters related with the qubit-cavity coupling by adding a lumped port to

the transmon junction in the file. We ignore contributions due to the SNAIL to avoid the

difficulties of multi-mode BBQ, but this simplification is reasonable as the SNAIL should be

biased to have no 4th order terms in its Hamiltoninan. As is usual in BBQ, by looking at

the zero crossing point of the imaginary component of the impedance function Fig. 52, we

can calculate the frequency and anharmonicity of the qubit, the frequency of the cavity, and

the dispersive shift between them, see AppendixV.B.

Another important set of parameters is related to the SNAIL’s third order nonlinearity
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Figure 50: Summary of the chemical potential with lossy SNAIL. (a) Schematic

of the new lossy SNAIL design. A transmon qubit (blue) is directly coupled to a SNAIL

mode (red). The chip is placed in a two-part sample holder. The aluminum part (black) is

a 3D coaxial cavity which will be used for qubit readout and the Copper part (orange) has

a tube in it for placing the sample and allows the flux tuning of the SNAIL via an external

coil. (b) The klayout file of the design. The transmon center line is designed to be higher

than the center line of the SNAIL. This is because we try to get a higher dispersive coupling

between the qubit and cavity by moving it to a area with higher cavity field. Then the

cavity bandwidth can be larger to perform a faster readout. (c) Zoomed in images which

show the details of the junctions used in the three components. See text for detailed designed

parameters.

and its coupling to the transmon. These are the equivalent of the 4th order self- and cross-

Kerrs. We have adapted our BBQ calculations to expand assuming a third order term in

the SNAIL junction, and ignoring the nonlinearity of the transmon (which is both not too

anharmonic and has no native 4th order term). The BBQ calculation for third order is

obtained by setting the lumped port on the SNAIL in the file and eliminating the port on

the transmon junction. In particular, for this device we are interested in the term gabb, which,

as detailed in the previous chapter, allows us to pump the SNAIL (b) to create an effective

110



(a) (b)

40 𝑚𝑚 20 𝑚𝑚

Figure 51: HFSS design of a qubit couple to a lossy SNAIL. The microwave properties

are designed with the HFSS software. Here we show the 3D model we used for simulation

in (a) and a zoomed picture of the chip in (b). Both the transmon qubit (red piece) and the

SNAIL (green piece) is set close to each other on the same sapphire chip to create enough

coupling between them. The cavity that holds the chip has two parts. The chip is then

inserted into the cavity that has two parts. The aluminum part is a high Q 3D cavity that

used for dispersive qubit measurement. The copper part is a circular waveguide that severs

as an enclosure (in the same way as in Ref [130]) and enable us to apply external flux through

the SNAIL. The chip is a double side polished sapphire. It is 40 mm long, and 2.5 mm wide

with a thickness of 430 µm. The diameter of the tube in the copper part is 4 mm.

second order interaction between the SNAIL (b) and qubit (a). The details of both ’third

order’ and ’fourth order’ BBQ are detailed in AppendixV.B. While our calculation method,

handling one term per simulation is tractable, and has yielded good devices, it is clearly not

ideal. In future work, it would be advantageous if we could develop an all-order, multi-mode

calculation method, but that is beyond the scope of my thesis.

By adding a wave port boundary condition to the cavity port and SNAIL port, the

coupling bandwidth of each port can also be extracted by fitting the reflection curve. Our

simulation yields κc = 0.6 MHz and κs = 16 MHz. An estimate of the qubit life time can be

obtained from the quality factor of the qubit mode in the eigenmode simulation: T1 = Qq/ωq.

The design parameters are: qubit frequency is 4.3 GHz with anharmonicity of 180 MHz.
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Figure 52: Im(Y ) from qubit lumped port. Imaginary part of the impedance parameter

as a function of frequency. The result is measured with the lumped port set on the qubit, that

is the impedance seen by the qubit. Simulation results for the qubit mode and cavity mode

are shown in (a) and (b) respectively. The zero points of the curves give the information

about the mode frequencies and coupling strength. See appendixV.B for more details.

The simulated T1 given by the eignmode simulation is ∼ 100 µs. The cavity frequency is

7.0 GHz with a bandwidth of κc/2π = 0.6 MHz and a dispersive coupling between the qubit

and cavity χqc = 0.3 MHz. The SNAIL frequency at the fourth order cancellation point is

9.0 GHz, with a bandwidth of κs/2π = 16 MHz, the third order coefficient for the SNAIl is

gsss = 18 MHz, with gsq/∆sq = 0.01, so the third order coupling between the SNAIL and

qubit is gssq = 0.17 MHz.

The linewidth of the cavity and dispersive shift is chosen to so we can do a good qubit

measurement (well separated Gaussian distribution on the I-Q plane) within a reasonable

time (∼ 1µs). Note that there is a trade off between the dispersive shift and the coupling

strength between the qubit and cavity. Move the qubit part into the Al part will provide a

stronger disersive shift but less coupling to the SNAIL. The SNAIL linewidth is chosen to

be larger to allow the fast decay of the photon in the SNAIL mode. The coupling strength is

designed to be larger enough to support the parametric processes without causing a decrease
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Figure 53: Im(Y ) from SNAIL lumped port. Imaginary part of the impedance parameter

as a function of frequency. The result is measured with the lumped port set on the SNAIL,

that is the impedance seen by the SNAIL. Simulation results for the qubit mode and cavity

mode are shown in (a) and (b) respectively. The zero points of the curves give the information

about the mode frequencies and coupling strength. See appendix V.B for more details.

in the life time of the qubit through the Purcell effect. All the mode frequency is design to

have no frequency collisions in the summation or the difference between any combination of

modes to prevent triggering other undesired parametric processes.

We can then use the parameters in this file to draw our pattern for the fabrication.

In Fig. we show the final Klayout file we used for the EBL writing. The position of the

qubit and SNAIL and the size of the antenna pad is straight forward to acquire. The part

that needs more attention is the junction areas for the modes. For qubit junction, as we

know the desired linear inductance Lq, then the critical current of the junction is determined

as Iq = Lq/ϕ0 where ϕ0 is the reduced flux quanta. The Iq sets the area of the junction

as Aq = Iq/ρI (ρI is the current density of the junction. This is a parameter sets by the

fabrication conditions that needs to be calibrated for different fabrication platform). As

for the SNAIL mode, the Ls we put in the HFSS is the desired linear inductance for the

whole SNAIL at its fourth order cancellation point. We also want to keep the inductance
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ratio between the small junction and larger junction in the SNAIL to be 0.23 to prevent the

hysteresis in the mode. Then with the ratio and Ls we can determine the inductance of the

small and large junction as in Sec. V.C, from which the area of each junction can be set in

the same way as the qubit junction.

Figure 54: Picture of the chemical potential experiment setup. Both the qubit and

SANIL is fabricated on the same sapphire chip shown in the bottom left of the picture. It

is placed inside a two-part sample holder. The upper portion contains a copper tube which

houses the SNAIL and has an external magnet for flux bias. The tube continues past the

copper/aluminum junction and enters a 3-D post cavity. The transmon is partly in the

cavity and partly in the tube, and couples to both the cavity and SNAIL. The whole device

is coupled to external transmission lines through three different ports: the SNAIL port (on

the Copper part), the weak port (on the Aluminum part) and the cavity port (goes into the

Al cavity from the top through the lead that is not shown). See text for the purpose of each

ports.
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2. Experiment setup

Figure 54 shows a picture of the final chemical potential device. As we introduced in

previous section, both the transmon qubit and the SNAIL are fabricated on the same sapphire

chip. The chip is then inserted into the two-part sample holder, consisting of a copper tube

which joins an aluminum tube which in turn enters a 3D post cavity [131].

The device connects to the external transmission lines through three different ports, the

‘weak’, ‘cavity’ and ‘snail’ port, as shown in the schematic in Fig. 55. The ‘weak’ port

is designed to provide coupling to transmon for us to do drive transmon transitions but

not strong enough to decrease the life time of the qubit through the Purcell effect. The

measurement pulse is reflected from the ‘cavity’ port (where it is entangled with the state of

the qubit) and then amplified by a TWPA provided by W. Oliver’s Lincoln Lab group. The

pump of the TWPA is combined with the measurement signal through a directional coupler.

The ‘SNAIL’ port has the strongest coupling to the transmission line to provide enough

photon loss rate of the SNAIL mode required by the protocol (it also makes parametric

driving of the SNAIL easier). The parameteric drives are applied to this port through a

directional coupler to allow us to monitor the output and identify the SNAIL mode frequency

via the ‘SNAIL diagnostic port’. Note that this port is used only in determining the bias

condition for the SNAIL, and is not regularly monitored while bath engineering the qubit,

and hence has no parametric amplifier. The external flux is created by a superconducting

magnet coil mounted near the SNAIL, in the copper part of the sample holder (not shown

in the figure).

3. Sample parameters

The Aluminum cavity in our experiment is 3D coaxial post cavity with a resonant fre-

quency of ωc/2π = 6.996 GHz, coupling quality factors of Qcavity = 11, 660 on the cavity

port and Qweak ∼ 1, 000, 000 on the weak port. Therefore, the cavity linewidth seen from

the strong port is κcavity/2π = 0.6 MHz. The tube diameter in the copper part is 4.4 mm.

The superconducting qubit is a 3D transmon qubit made by commonly used Dolan bridge

technique with ground to excited state transition frequency of ωge/2π = 3.778 GHz, anhar-
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Figure 55: Schematic of the chemical potential experiment setup. The device is

connected to the external environment through three different ports: weak port, cavity weak

port and SNAIL port. Qubit drive pulses are sent through the weak port. Measurement

pulses are reflected from the cavity port and them sent to the TWPA before finally being

digitized at room temperature (not shown). The pump of the TWPA is also sent on this

output line through a directional coupler. The coupling between the SNAIL port and system

is designed be strong, in order to make the SNAIL both lossy and easier to drive. The

parametric drives are sent through this port from a directional coupler, which also allows

diagnostic measurement of the SNAIL for tuning.

monicity α = 180 MHz, and a qubit-cavity dispersive coupling strength of χ/2π = 0.3 MHz.

This qubit has a T1 of 15.6 µs, and T2R of 8.5 µs (T2E is 8.5 µs). The SNAIL is also made

with the Dolan bridge technique with the frequency at zero flux of 9.2 GHz and frequency at

operation point of 8.0 GHz (where we found experimentally that we could apply the strongest

drives with the cleanest qubit response). The SNAIL is strongly coupled to the external en-

vironment with a coupling quality factors of Qs = 500. The whole system is wrapped in

aluminized mylar and mounted in a cryoperm shield (which is wrapped in a separate layer of

aluminized mylar), with no external aluminum shielding. As shown in Figure. 56, the device

is mounted at the base stage of an Oxford dry helium dilution refrigerator. The SNAIL
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Figure 56: Wiring diagram of the cryogenic microwave measurement setup for

chemical potential experiment. The experiment is cooled down to around 20 mK on the

base of a dilution refrigerator. Input lines carrying signals to the system were attenuated

and filtered using homemade lossy Eccosorb filters. The SNAIL flux control is realized with

DC signals sent through a separate DC superconducting loom provided by Oxford (not

shown) to the magnet, which is bolted to the sample. Output lines carrying signals from

the system are also filtered with homemade lossy Eccosorb filter to prevent high frequency

stray photons. The isolators on the output lines are used to prevent reflected signals from

the HEMT amplifiers/upper stages from propagating backwards into our sample.
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information can be accessed from the parametric drives port. An external magnetic flux

Φext is applied to the SNAIL by a magnet coil close to the sample.

4. Experiment results

Flux bias of the SNAIL mode

In Fig. 57(a) we show the resonant frequency fs of the SNAIL mode as a function of Φext,

determined through reflection measurements off of this port. We also sweep the Φext in the

opposite direction and get the same mode frequencies, indicating that there is no hysteresis

in our device.
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Figure 57: Flux sweep data of the SNAIL mode. (a) Reflected phase as a function

of frequency for SNAIL mode at different external flux points. The flux is applied through

a superconducting coil mounted near the SNAIL. (b) The phase data (blue) measured at

Φext = 0.62π, where the device is operated during the experiment. The data is fitted to a

reflection model (red) to obtained the bandwidth for the SNAIL mode.

In Fig. 57(b) we show the reflection data at the bias point Φext = 0.62π we operated

at during the experiment. The bandwidth of the this mode can be extracted by fitting this

data to a reflection model.

At the operational point, by applying the parametric drives to the device at a frequency

of ωd = ωs + ωge or ωd = ωs − ωge, we can trigger the ‘heating’ and ‘cooling’ process
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respectively. In practice, however, we need to find the optimal point by sweeping around

this ideal frequency, as the pump photons will cause the mode frequency to shift due the

Kerr effect, as shown and discussed later in Fig. 62. The qubit state is measured using

the conventional dispersive readout method with a TWPA as our nearly quantum-limited

amplifier. The TWPA is driven by its own pump tone to achieve a 15 dB gain near the

frequency of the readout cavity.

Pulse sequences and measurement protocol

The pulse sequence for studying the qubit’s response to bath engineering is shown in

Fig. 59. The qubit is first projected to the |g〉 state by a strong measurement and post-

selection, and then rotated to state |g〉, |e〉 and |f〉 as required by the experiment with

appropriate pi pulses. Next, we apply parametric drives through the SNAIL port with dif-

ferent frequencies to trigger different processes in the system and affect the qubit’s relaxation.

The length of this stage is a variable, which corresponds to the ‘time’ parameters in the later

sections. In the last stage of the experiment, a strong measurement is performed to readout

the state of the qubit in the z basis.

When deciding the state of the qubit from a measurement, there are two regimes of

measurement. The first case is when the system is connected with the TWPA as we planned,

then we are able to perform a single shot measurement on each readout pulse. A typical

result is shown in Fig. 58. where we repeat the same measurement for multiple times and

plot all the result as a histogram on the I-Q plane (note that the TWPA is acting as a

phase preserving amplifier in these experiments) as shown in Fig. 58. The color of each

pixel represents how many times the corresponding I-Q pair has shown up in all these

measurements. In this case, the qubit is prepared in the state (|g〉+ |e〉)/
√

2, and we can see

two bright blobs in the histogram which correspond to the |g〉 and |e〉 states. We also see a

third, dimmer, blob which corresponds to the |f〉 and other higher states that shows up due

the finite temperature of the system. Then, in principle, we could prepare the qubit in |g〉,

|e〉 and |f〉 state and measure it to get the information of the center of each distribution, and

could assign any measurement result we get later to a certain qubit state that it is closest to.

The limitation of the fidelity of this method is that the |f〉 state population is not accurate,

119



as it is actually the population of all the higher energy state. And there will also be the

infidelity that comes from the finite SNR of the measurement, that is there is a non-trivial

chances we will identify a |g〉 state qubit as an |e〉 state one and vice versa.
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Figure 58: Histogram of a qubit meausrement with TWPA. Multiple shots of the

measurement is taken and the data are plotted in the form of a 2D histogram. As we

discussed in Ch. II, the coherent light can be visulized as a 2D Gaussian distribution on the

I-Q plane. For different qubit state, the light will pick up a different phase shift, due the

dispersive coupling between the qubit and the readout cavity, result in a different position

on the I-Q plane. Note that the |f〉 state actually represents all the higher state that we

cannot distinguish due the the choice of the probe frequency.

The second situation is for the cases when we do not have a TWPA connected with the

system, which is not ideal, yet a practical situation we need to deal with as we often mounted

more than one sample and had only one TWPA. Without the parametric amplifier, we can

no longer perform the single shot measurement to identify where the |g〉, |e〉 and |f〉 states

are using the histogram. In this case, we design a series of calibration pulses before each

experiment to get the corrected reflected voltage value for different qubit states. There are
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six different calibration pulses:

• 1. No pulse, then measure.

• 2. A ge pi pulse, then measure.

• 3. A ge pi pulse, an ef pi pulse, then measure.

• 4. A ge pi pulse, an ef pi pulse, a ge pi pulse, then measure.

• 5. An ef pi pulse, then measure.

• 6. An ef pi pulse, a ge pi pulse, then measure.

Let Vg,e,f and Pg,e,f be the reflected voltage and population at equilibrium temperature

for qubit in |g〉, |e〉 and |f〉 state, Vi be the measured voltage for ith measurement, and

assume |f〉 state population is small at equilibrium, so we have Pf ∼ 0 and thus Pg +Pe = 1.

We have:

V1 = PgVg + PeVe

V2 = PgVe + PeVg

V3 = PgVf + PeVg

V4 = PgVf + PeVe

V5 = PeVf + PgVg

V6 = PeVf + PgVe.

(VI.4)

Recombining these equations, we note that:

V6 − V5

V4 − V3

=
Pg
Pe

(VI.5)

then with Pg + Pe = 1, we are able to solve Pg and Pe from this equation. Once we have Pg

and Pe and substitute them into the equation of V1, V2 and V3, we are able to solve Vg,e,f ,

which will then be the calibrated voltage value for the experiment.

This method, however, requires that we do not have too much |f〉 state at first and

that the life time of qubit is long so that decaying to another state during the measurement

is unlikely. Unfortunately, this may not always be the case. More, we do not base this

measurement on single shots but on ensemble averages, so that population drift, readout

drift, and noise can combine to sometimes give nonphysical data (like a negative population)

as shown in some of our data.
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Fitting relaxation rates

Assuming that the transmon decays via single-photon loss processes, as is usual for

a harmonic oscillator, we consider a semi-classical model that describes the evolution of

the qubit’s polarization using the Bloch equations, with times τij or rates Γij representing

transitions from state i to state j . We define Pg(t), Pe(t) and Pf (t) to be the population of

|g〉, |e〉 and |f〉 state, respectively, so that:

dPg(t)

dt
= −Pg(t)(

1

τge
) + Pe(t)(

1

τeg
)

dPe(t)

dt
= Pg(t)(

1

τge
)− Pe(t)(

1

τeg
) + Pf (t)(

1

τfe
)

dPf (t)

dt
= −Pf (t)(

1

τfe
) + Pe(t)(

1

τef
)

(VI.6)

Simply put, for each state the rate of the population change is determined by the summation

of the rate for the qubit leaving the current state and the rate for the other states qubit

coming to this state. This group of differential equations can be solved numerically given

the initial state of the system Pg(0), Pe(0) and Pf (0). In practice, we determine the rates

of each process γij is by comparing the data to the numeric result of the above equations

while manually adjusting the rates until it matches with the data, as we have found that

automatic fitting can be quite unstable for this system. This is how we get the ‘fit’ curves

and relaxation rates in the figures shown below. We should also note here that the rates can

vary by a factor of 100 from slowest to fastest, in which case the slowest rates (corresponding

to the longest coherence times) can only be determined rather inaccurately from our data.

To get the steady state distribution in the two-level system form by |g〉 and |e〉 and

estimate a qubit temperature, we assume the |f〉 population is negligible and set dPg(t)/dt =

dPe(t)/dt = 0 to find the usual relationship:

Pg(∞)

Pe(∞)
=
τge
τeg
. (VI.7)

Single pump result
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Figure 59: Pulse sequence for chemical potential experiment. This pulse sequence

consists three stages of qubit, cavity and parametric drive manipulation. The first stage

is state preparation, during which the qubit is first projected to the state |g〉 by a strong

measurement (blue box) and post-selection, and then rotated to the state (|g〉, |e〉 or |f〉) as

required by the protocol with no pulse (Identity), Rge
x (π) or a Rge

x (π) pulse followed by a

Ref
x (π) pulse, respectively. The second stage is of qubit relaxation, during which the system

is parametrically driven (or not) by the signals through the ‘SNAIL’ port with different

frequencies. We vary the length of this stage which corresponds to the ‘time’ parameters in

the following measurements. In the third and final stage a strong measurement is performed

to readout the state of the qubit.

We first show the result of the heating ‘Σge,s’ drive. In Fig. 60, we plot the population of

the lowest three levels of the transmon as a function of time for different Σge,s drive strengths.

Figure 60(a) shows a particular case where we set the drive strength so that the ‘heating’

rate matches the nature decay rate of the qubit. If the bath engineering process is working

as desired, the un-driven rates (for the example of Σge,s driving this would be all rates except

Γge (and time τge) while remain unchanged. If the two rates are close to each other, we will

end up with a steady state with a similar population of ground and excited state, as we have
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Figure 60: Experiment result for ‘Σge,s drive’. Qubit population number for different

energy level as a function of time with different pump conditions. The qubit is prepared in

ground state. (a) As we turn on the drive, the |e〉 state population is gradually increased,

indicating a ‘heating’ process for the qubit. We adjust the driving strength so that the qubit

‘heating’ rate is close to its natural decay rate, which result in a steady state with population

distribution close to 50/50 between |g〉 and |e〉 state. (b) Result for the same drive with

different strength. As the driving strength becomes stronger, the qubit thermalizes to its

equilibrium faster and also the excited state population is larger, indicating a ‘hotter’ qubit.

And as we keep increasing the drive strength, we reach a population inversion state for the

qubit, which is non-achievable by thermalizing it to a natural heat bath. The experimental

data is consistent with the simulation result in the previous chapter.

seen in Fig. 60(a), and the effective temperature (if we pretend that the transmon has no

higher states, an assumption that is well supported by the very low population of the |f〉

state) is very nearly infinite. In Fig. 60(b) we show the result of the same protocol with

different pumping strengths. It is clear that as this strength gets stronger, the system reaches

the steady state faster with final population distribution that is consistent with Eq. VI.7.

We are also getting more |f〉 population as the we drive the system harder. This is due to

the finite anharmonicity of the qubit and also the increased population of |e〉 state, as we
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expected from our numerical result in Fig. 36.
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Figure 61: Experiment result for ‘δge,s drive’. Qubit population number for different

energy level as a function of time with different pump conditions. The qubit is prepared

in excited state. (a) The natural energy relaxation process for the qubit. Note that due

to the finite physical temperature of the system, there is a non-trivial population of |e〉

state at equilibrium. (b) Result for the ‘δge,s’ drive with different strength. As the driving

strength becomes stronger, the qubit thermalizes to its equilibrium faster and also the |g〉

state population is larger, indicating a ‘cooler’ qubit. The experimental data is consistent

with the simulation result in the previous chapter.

We get a similar result for the ‘δge,s drive’. In Fig. 61, we plot the population number of

each state as a function of time for different pump strength. Figure. 61(a) shows the case

where we apply no drive to the system so we are seeing nature decay of the qubit with the

rate τeg. We note that due to the finite temperature, the system does not reset completely

in the ground state, but with a non-zero population in the excited state. In Fig. 61(b) we

show the result of the same measurement with different pumping strengths. As we expected,

the system goes to a ‘cooler’ state with a faster rate when the pump strength gets stronger.

Kerr effect in the system

The result of ‘Σge,s’ and ‘δge,s’ drive shows that with a single parametric drive, one can

control the rate the system reaches to the equilibrium but the population distribution in the
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Figure 62: Data for the Kerr effect with Σge,s drive. The qubit upgoing time τge as a

function of different Σge,s pump conditions. The qubit is prepared in ground state and we

apply a Σge,s pump to the system. We sweep the frequency and strength of the pump and

record the states population as a function of time. The qubit |g〉 to |e〉 transition rate is

calculated from Eq. VI.6.

steady state cannot be set independently. In order to control both the rate and steady state

distribution we need to apply both drives at the same time. However, this requires us to

consider the Kerr effect as there will be more pump photons that shifts the mode frequency.

We can see the Kerr effect by sweeping the pump conditions and frequencies. The result

is shown in Fig. 62. The qubit is prepared in |g〉 state. We then turn on the Σge,s pump

with different drive frequencies and strengths. The qubit will then start to ‘heat up’ towards

the |e〉 state, with a rate 1/τge that can be extracted from Eq. VI.6. As we increase the

drive strength, the Kerr effect will start to shift the mode frequency negatively, result in a

change of the optimal pump frequency. This effect can be seen in Fig. 62 as the optimal

pump conditions for the fastest transition time is moving negatively in frequency as pump

strength increases. Because the with a negative Kerr term and non-zero pump photons in

the corresponding mode, we effectively create a negative frequency shift for the mode.
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Figure 63: Experiment result for single and multi-drives. Qubit population number

for different energy level as a function of time with different pump conditions. The qubit is

prepared in excited state. (a) We apply a single δge,s drive to the system with a strength of

0.1 MHz. The qubit starts ‘cooling’ as we turn on the drive. (b) We apply a ‘Σge,s’ pump

and a ‘δge,s’ pump at the same time. Now the system still thermalized to the state with the

same population distribution, but at a much faster rate.

Multi-pump result

In order to operate the system with multiple pumps at the same time, we need to correct

our pump pulses by considering this Kerr effect. In Fig. 63(b), we show the result for the case

where we apply both Σge,s and δge, s drives at the same time with corrected pump parameters

and compare it to a case where we only apply a single δge,s pulse. For both pumping schemes,

the qubit thermalizes to a steady state with the same population distribution, corresponding

to the same chemical potential. It is also clear to see that with both pumps on, the system

reaches the equilibrium faster than the single pump case showing that by carefully choosing

the strengths of the ‘heating’ and ‘cooling’ processes. This faster thermalization rate is

crucial if we want to use this qubit as ‘bath’ that will eventually couples to another system.

However, we also need to note here that in order to operate the system with multi-pump on

at the same time, we need to take into account the Kerr effects from all the pump drives.
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That is, we need to carefully search for the optimal pump frequencies for all the pumps so

that we can compensate the frequency shifts induced by the pump photons.

D. Conclusion and outlook

In this chapter, we introduced the experimental realization for the proposal that creates

chemical potential for a transmon qubit.

The direct implementation of the original proposal with a low frequency JPC had a

promising start but did not succeed in the end, as the low participation ratio of the low

frequency idler mode limited the rate of the parametric processes and the large internal loss

of the device further reduced the signal photon life time. Because of this, the transmon’s

photon will decay faster than the thermalization rate to our engineered bath. We next moved

to the idea of coupling a transmon qubit to a lossy SNAIL. In this case, we no longer have a

participation ratio problem, so the parametric process can be driven at a decent rate. And

the life time of qubit is largely increased by placing the it in a high Q 3D cavity. So with

this new design, we overcome the difficulties we encounter with the low frequency JPC, and

are able to realize a controllable chemical potential for the photons in the qubit.

A chemical potential for light will allow the quantum systems to access a wide variety

domains that are used to be forbidden. In addition to the application of the controllable bath

itself, the setup we used in the experiment is also showing its potential of being a promising

platform for new experiments.
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VII. Conclusion

We have discussed two major experiments in this thesis: qubit measurement with two-

mode squeezed light and a tunable chemical potential for photonic (qubit) system. Although

very different in their aim and effect, they are both examples of what can be achieved with

parametric driving. As stated in Ch. II, the term ‘parametric’ can be a bit confusing in

superconducting quantum information, and so we have adopted in practice a definition which

captures the essence of what we try to achieve with parametric drives, which we will try to

define here. Our circuits are typically controlled entirely by microwave drive tones applied

externally, and the terms we are interested in are often associated with the couplings among

multiple modes, and it is hard to imagine our drives as physically dragging elements around as

in simple physical examples. Instead, we adopt the following as a definition for parametric

processes and drives. The simplest parametric process is one where a non-rotating term

comprised of N raising and/or lower operators in the Hamiltonian is driven so as to produce

an order N − 1, rotating term. This definition is a bit broad, but we find it operationally

useful in the lab as an engineering tool, because it teaches you how to produce evolution you

desire from the ’hidden’ non-rotating terms in the system, or alternately gives you guidance

on which nonlinearities might be useful to build into a system for later use as controls.

If one wants to be even more general, we can extend this further to parametric processes

which consume multiple pump photons/waves simultaneously. This would, for instance, be

a process where two pumps are used simultaneously to take a 4th order term and produce a

2nd order interaction, as in the double-pumped JPA [87]. Then we could define an M -wave

parametric process as using an Nth order non-RWA term and M pump photons (which can

be produced from 1 to M drive tones) to produce an (N −M)th order rotating term. This

perhaps begins to feel a little bit excessive, and it is certainly true that we are not eager

to climb the ladder to higher values of M . However, this type of thinking is probably more

important than we realize, as we are finding in our experiments across the laboratory, that

things like amplifier saturation [81, 82, 89] are related to unintentionally activated, higher-

order, parametric processes, and we suspect this may also play a role in qubit-qubit controls
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and perhaps also the QNDness of qubit readout in circuit QED. Relevant examples of ex-

periments which may be experiencing similar effects (though with different ways of viewing

and explaining these issues) can be found in references [132,133].

So, in short, we define a parametric drive as one which utilizes a drive applied to term

which in the undriven system has negligible impact (or as is often states, is eliminated by

the rotating wave approximation) to create a lower order rotating term. This new term need

not respect energy or excitation conservation (the drive provides as source/sink of photons

as required). Thus, parametric drives can be quite useful and flexible tools for manipulating

quantum system. Much of the ‘Hamiltonian engineering’ which our laboratory is now pursu-

ing is focused on making use of these drives in all aspects of quantum information. One final

caveat: the ubiquitous fourth-order Kerr terms in circuit QED have both non-rotating and

rotating terms, the former are regularly used to power parametric processes. This doesn’t

conflict with our definition above, but the tendency of Kerr-based nonlinearities to shift with

drive frequency certainly adds additional complications we would prefer to avoid.

In the first project presented in this thesis, parametric drives are used to generate and

manipulate two-mode squeezed light. One important result from this project is that we

have demonstrated a new scheme for interferometric readout of a superconducting qubit

with displaced two-mode squeezed vacuum and show a 44% improvement in power SNR

compared to conventional coherent light plus phase-preserving amplification readout.

Another, more interesting, result appeared as we investigated the quantum readout ef-

ficiency of our TMS interferometer using weak measurement protocol. The data show that

there are important effects on the ratio between z back-action and the concomitant qubit

phase back-action of this measurement process relative to other known readout schemes. It

appears that the increase in SNR of TMS readout which we demonstrated for projective

readout comes at the cost of reducing the trackability of phase back-action in the presence of

noise/inefficiency in the system. Conversely, if we perform the measurement at a point where

the interferometer has the lowest achievable SNR, we instead see enhaced phase back-action

trackability.

We believe that these weak measurement results help explain how the TMS interferometer

exceeds the usual limits for SNR in qubit measurements with coherent state readout, namely
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by deliberately paying a price in a quantity (the phase back-action). This effect seems to

resemble a related tradeoff in phase-sensitive readout [87], in which a choice of amplifier phase

can give perfect knowledge of one quadrature of a qubit’s evolution by squeezing the other

away, and we attribute the effect in TMS readout to the more complicated TMS squeezing

process of the entangler and analyzer JPCs.

In the second project, parametric drives are used to create couplings between a qubit

and the lossy bath mode, which allows us to control the drives and dissipation between the

qubit and bath to perform desired bath engineering process. The important result from this

project is that we have created a photonic system (trasmon qubit) with a chemical potential

that can be tuned by the parametric drives we apply to the system. We started with a

low-frequency JPC plan that was proposed in the origin proposal. Although it was not the

final design for the experiment due to some technical problems, we still learned how to build

a JPC with a such low frequency in both microstrip and lumped version. The experience we

gained may find use in future work when such a JPC is needed for other applications.

The final design involves a transmon qubit couples to a lossy SNAIL mode, which provides

a third order coupling between the system (qubit) and the bath (SNAIL). With the help of

this coupling we can address the ‘heating’ and ‘cooling’ process for the system separately

(which are controlled by a single pump in the original proposal), thus gives us more control of

the system which lifts the requirement of the low frequency mode. By tuning the strengths of

the drives, we can control the rate of each process to achieve a system with both a controllable

chemical potential and independently tunable relaxation timescale. Our tunable chemical

potential for light will allow quantum systems to access a wide variety of domains that are

not achievable with present control schemes [67–69]. Further work in this direction is ongoing

in the lab in collaboration with Houck’s group at Princeton.

Outlook

In the TMS readout experiment, although we lack a full theory for our device in the

presence of finite efficiency and amplifier bandwidth, we believe that we can find practical

applications of this effect by adding a second qubit to the other arm of the interferome-

ter and attempting to entangle the two qubits by measurement. A similar entanglement
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generation protocol has been proposed in [115, 134], in which a single phase-preserving am-

plifier is used to entangle the photons from two different qubit-cavity systems. Then by

performing a pseudo-parity measurement and post-selecting the result, we are able to cre-

ate a measurement-based remote entanglement between the qubits. The implementation of

this protocol requires a good projective measurement in the z direction to select out the

desired parity result with high fidelity while keep a minimal measurement back-action and

maintain a high measuremetn efficiency on the qubits so that we are indeed generating a

entangled state instead of a mixed state. Now with our new discovery of relation between

the z-projectiveness and phase trackability, we can make a trade-off that rebalance the mea-

surement strength and the back-action in-situ to find the optimal operation point that gives

the necessary improvement to overcome the losses and inefficiencies which currently limit

these experiments.

In the bath engineering project, we introduce a new design that combines transmons

and 3D cavities with ‘SNAIL in tube’ in our setup not only benefits us in this experiment,

but also shows a large potential for other applications. The Schoelkopf and Devoret groups

at Yale [130] have pioneered this architecture for fourth order couplings, here we adapt it

admit flux for a SNAIL and its third order non-linearity. Our early results find that the third-

order parametric couplings seem to have a natural advantage over fourth order couplings in

that their pump frequencies are unambiguous, which has the disadvantage of giving the

experimenter no wiggle room if two processes are nearby in frequency. However on the other

hand, it brings a larger advantage that unwanted transitions are much easier to avoid (as they

are, again, fixed in frequency). This will need further exploration, and applying multiple

pumps to activate multiple parametric processes does create some difficulties. Primarily

this is due to Kerr effects as shown above, which we believe are both due to static and

dynamical effects as we have explored thoroughly in parametric amplifiers [82, 89, 120], but

also the accidental activation of a fourth or higher order process with the combination of the

multiple drives.

However, there are some existing issues that needs to be solved before we can better

use the design for other projects. One major challenge is the loss of the seam where copper

and aluminum (or aluminum and aluminum) connect [135]. Since the electromagnetic field
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Figure 64: Schematic of embedded amplifier. Embedded amplifier design based on

the platform inspired by the chemical potential project. We will have the transmon, cavity

and SNAIL coupled the same way as in the chemical potential project and add another

linear resonator and have it also coupled to the SNAIL mode. Then by driving a Gain-Gain-

Conversion process between the SNAIL, resonator and cavity while still having the transmon

dispersively coupled to the cavity, we can create a parametric amplification process that is

sensitive to the state of the transmon.

can touch the seam, there will be currents flow through across it. Then, the loss of the

seams will result in a lower internal Q for the corresponding mode. In our experiment we

are primarily concerned about this lowering the lifetime of the transmon, unfortunately it

is also the mode closest to the seam. This effect can be minimized by carefully design the

the geometry of future samples, especially the placement of the copper-aluminum transition

and avoiding any aluminum-aluminum joints with significant participation in high Q cavity

modes. Also, this new design requires a longer chip with with multiple objects (resonators,

SNAILs, transmons) on a single piece of sapphire, which needs extra writing time and no

failure in any element, and therefore brings extra difficulties during the fabrication process.

We are addressing this by adopting the Houck group’s new tantalum fabrication method

qubit [32], writing all large features optically without (hopefully) sacrificing coherence time
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and leaving only junction failure as a significant issue which we can address with larger

number of samples due to the vastly reduced (∼ 5-10 hours to ∼ half an hour) of a set of ∼

20 SNAILs and transmons.

We already have some plans of how to use the setup for other experiments. One interest-

ing idea is the ‘embedded amplifier’. As shown in the schematic in Fig. 64 we are trying to

integrate a parametric amplifier directly with a qubit-cavity system. Then, we can perform

a qubit measurement without using a lossy directional device like a circulator or isolator

which can, in principle, increase the measurement efficiency. We have seen preliminary re-

sults where we apply a pump to the SNAIL mode in our existing sample and observed a

20 dB gain in that mode. This demonstrates that this device can operate in amplification

mode, and thus gives us more confidence that the embedded amplifier can be realized in the

same device.
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